电源管理

交叉参考搜索

应用手册

培训

工具和软件

方框图

ZigBee®

模拟eLAB™

均流技术在 4 对线缆结构、高功率 PoE 中的应用

作者:Steven R. Tom, 德州仪器 (TI) 电源接口产品系统工程师

引言


以太网供电 (PoE) 参数是由 IEEE 802.3-2005 第 33 条所制定的,其不但确定了允许的架构,而且还确定了以太网供电系统可提供的最大功率1。现行标准规定两对线缆结构的末端产生最大的功率为 12.95W。由于终端设备变得日益复杂,这就要求有比 IEEE 标准所允许的电源功率更为强大、架构更具有灵活性的电力能源。本文介绍了一种特殊的均流技术,这种技术采用了四对线缆体系构架,使得传输到终端的功率可以达到 50 瓦特。

以太网电源两对/四对架构综述


典型的以太网电源端到端解决方案包括一个被称为"供电设备"(PSE) 的电源,一个被称为"用电设备"(PD) 的终端设备。供电设备可能以独立或者嵌入的形式存在于路由器或交换机中。现在使用的大多数以太网线缆均为 5E 类 (CAT5E) 线缆,这种线缆是由四组未屏蔽的铜双绞线构成。

图 1 显示了可以在 CAT5E 类线缆上传输电力的可能架构。图 1a 展示的架构通过两对 CAT5E 线缆形成的单环路将电力由供电设备传送到用电设备。IEEE 标准规定电力可以在单环路的两对线缆中传输,而不能同时在所有四对线缆中传输。图 1b 在四对线缆中采用两个电流环,这样的结构增加了最终传递给用电设备的功率。四对线缆架构的主要优点在于导线数量的增加,从而降低了功率损耗,并且增加输入到终端设备的功率。而主要的缺点在于成本的提高和为了确保在两个电流环之间的均流所带给系统的复杂性增加。

在四对线缆架构中,两个电流回路都进给一个单独的 DC/DC 转换器。如果每个回路的阻抗是相同的,那么电流的均流就是不必要的,并且每个环路都将给 DC/DC 转换器提供电流值是所需输入电流一半的电流。然而,电线、连接器和组件之间的不匹配会引起一个回路携带的电荷比另一个回路多。为了确保可靠性,在每个电流回路中的系列组件在设计时都应被设计成能够处平衡度最差的情况,与此同时保持数据的传输。两个电流回路之间的均流越差,就意味着设计更加庞大(从而成本更高)。最大功率输出可以通过使两个线路上电流均流实现,从而每个线路上的电流都略低于其限制电流。下面的设计实例和分析表明如何确定均流性最差的情况和如何使其最小化。

设计升流电路实例


在一个四对线缆的结构中,用电设备的检测和分类功能必须在每两个电流环上都实现,因此这就需要有两个用电设备控制器。在如下的范例中,当用电设备将能源传递给 DC/DC 电源时,采用了两个 TPS2376-H 控制器(请参见图 2)。DC/DC 电源在单开关反激拓扑结构中采用 UCC3809-2,从而提供一个独立的、负载电流是 8A 的 5V 电压。

表 1 显示了预先设计的方案规范被应用于此次设计。可以认为,一个通常可用的供电设备将提供 51V 到 57V 的电压调节,而在这个调节范围内都能给每个由两对 CAT5E 线缆组成的电流环路提供 800mA 的电流。我们根据经验进行合理假设,假设每两对线缆组成的环路(最大长度 100 米)的阻值是 12.5 欧姆。CAT5E 线缆将连接到用电设备的接口,并输入到 DC/DC 转换器,提供一个负载电流为 8A 的 5V 电压。为了简化图形和强调用电设备的接口,在图 2 中 DC/DC 电源用一个简单的黑盒子表示。

假设 DC/DC 转换器的转换效率约为 85%,那么要求输入的功率将近 47W。根据 CAT5E 线缆的长度和供电设备的电压大小,为了满足输入功率的要求,输入电流需要在 0.825 和 1.2A 之间。

TPS2376-H 的电流限制在表 1 中罗列出来,为了在运行过程中不造成意外的关闭,在这两个电流环中的电流都必须不超过这个值。由于 TPS2376-H 的最小电流为 625mA,图 3 所示的升流电路是对这两个电流环中的输入电流进行升流,将其提高到允许的 800mA,从而获得 800mA 下的全电势。在实际中,电流并没有被升高,它仅仅是在 TPS2376-H 周围分流了。图 3 显示了升流器是怎样在其中的一个电流环中起作用的。由于在 TPS2376-H 引脚 5 (RTN) 上的回流增加,R15 两边的压降就增加了,相应地基极和射基之间的电压降低就使得晶体管 Q1 开始工作。当 VR15> 0.7 V 时,流经 R15 的电流就会打开晶体管 Q1。这使得 Q1 导通,并分流了 TPS2376 – H 附近的部分返回电流。在短路或者瞬态相应状态下,Q2 将会把 Q1 的基极钳位到它的集电极并迫使其强行关闭,从而 Q1 提供保护。如果电流持续增大,当 VR19> 0.7 V 时,Q2 将会打开,从而分流 Q1 的基极电流,并最终使 Q1 关闭。如欲了解该电路的更多详情,敬请参阅参考文献 3。

使用 PSPICE 软件对四对线缆架构进行建模


为了确保该设计可以适当的进行分流,有必要使用如 PSPICE 等仿真工具对四对线缆架构进行仿真。需要仿真的关键元素是每个电流环路中的各种阻抗源。如二极管电桥,CAT5E 线缆电阻,TPS2376-H 中通过场效应管 (FET) 和支持电路的各种电阻。表 2 是图 2 中的实际示意图以及图 4 中的使用 PSPICE 的示意图相关内容。

在仿真模型中,供电设备 (PSE) 是一个理想的直流电压源,DC/DC 电源供应器是一个理想的直流电流源,CAT5E 线缆和用电设备 (PD) 接口是 4 个电路路径。图 4 中的颜色代码路径对应图2中相应的路径。将 PSE 仿真成一个理想的直流电压源,DC/DC 电源供应器仿真成一个理想的直流电流源是合理的假设。这样的假设显著的简化了仿真模型,将分析的重点放在了 CAT5E 和 PD 电路的均流上。

如前所述,在一个理想的电路中,每个路径中的电流都是相等的,因为每个路径的组成部分都是相同的。然而,由于二极管正向电压的下降,线缆电阻以及场效应管的通过电阻的存在,致使电路中相同路径产生不平衡。PSPICE 只允许模拟理想情况,即使用相同的元器件,同时每一个电流环路是均衡的。仿真分如下步骤进行,扫描直流 (DC) 源电流,直流电压转换 (I_DCDC),记录两条电流环路中的每一条的电流值和直流 (DC) 源的转换功率。直流 (DC) 源的转换功率指的是 DC/DC 转换器的输入电流。(如果 DC/DC 电源供应器的效率是已知的,它可以乘以输入功率来计算向负载供电的实际功率。)在每一条环路内部,必须要确保通过 TPS2376-H 器件场效应管的电流小于最大电流限—625mA,同时,每一条环路中的总电流不能超过 800mA。

另一个必须要考虑的变量是 CAT5E 线缆的长度。IEEE 标准允许 PD 和 PSE 之间的最长线缆长度为 100m。图 5 给出了当线缆电阻(R12、R45、R36、R78)改动,线缆长度为 100m 和 1m 时边角区域的仿真结果。所有的仿真是在最小 PSE 电压—51V 下进行的,因为在该条件下输入电流有最大值。

模拟结果证实,在匹配的条件下,电流环路将向 1、3 路径和 2、4 路径均等的供电。随着输入功率增加到超过 25W,升流电路将打开,每个电流环中的一部分电流将分流至 TPS2376 - H。当 DC/DC 电源供应器的输入功率为 48W 并且连接 PD 和 PSE 之间的线缆长度为 100m 时,每一个 TPS2376-H 器件所能分流的最大电流值是 465mA。每一个双层电流环路中的最大电流为 599mA(465 mA + 134 mA)。该仿真结果是可以接受的,因为 TPS2376-H 的最大电流小于 625mA 的电流限,并且每一个双层电流环路的最大电流小于 800mA。

了解环路阻抗不匹配的原因


为了确保性能的可靠性,了解环路阻抗不匹配产生的原因非常重要,这样我们就可以将最坏的失衡情况输入到仿真模型进行模拟。图6的仿真电路将下列变量的最大值纳入考虑范围:二极管正向电压,1% 的电阻容限,通过场效应管的最大导通电阻容限。除此以外,3% 的最大线缆长度电阻容限也符合 IEEE 标准。

我们调整了以上变量的值,使阻抗的失配存在于同一个电流回路中,从而引起最大程度的不均衡。再运行一次前面提到的 4 对线缆架构仿真模型来验证每对线缆中电流的失衡。如图7所示,使用一根 100m 长的线缆时,通过每一个 TPS2376-H 器件的最大电流为 488mA;线缆长度为 1m 时该电流为 498mA。线缆长度 100m 时,最大可用电流(在这个例子中的路径 1 和路径 2)为640mA;线缆长度为 1m 时为 660mA。由于最大失衡电流在 TPS2376-H 中没有超过 625mA 在每一条电流回路中也没有超过 800mA,所以该设计仍然符合最初的设计规范。

板级结果


我们搭建和测试了一块评估电路板来确认仿真的正确性。图 8 给出了在恒温25°C 的理想实验室环境下每一路回路电流的测量值。该板级结果证明了通过 TPS2376-H 后产生一个电流失衡,线缆长度 100m 仅为 10mA(2.1%),1m 时为1mA(0.2%)。效仿最坏情况下的条件,将二极管和电阻与 R78 电流回路的返回路径相串联,重新测试评估电路板。二极管的正向压降 (0.7V) 和 0.5Ω 的附加电阻被计算进去,用以补偿最坏情况下二极管前向压降的变化量和系统的电阻容限。通过合理的板级测试来指导测量实际电流回路失衡是可行的。如图 9 所示,使用一根 100m 长的线缆时,通过每一个 TPS2376-H 器件的最大电流为 488mA;线缆长度为 1m 时该电流为 484mA。线缆长度 100m 时,最大可用电流(在这个例子中的路径 1 和路径 2)为 648mA;线缆长度为 1m 时为 640mA。由于最大失衡电流在 TPS2376-H 中没有超过 625mA 在每一条电流回路中也没有超过 800mA,所以该设计仍然符合最初的设计规范。

结论


总体而言,仿真和板级结果均证实,在 CAT5E 以太网线缆中,通过控制流过每个 TPS2376-H 的返回电流不超过它的最小电流限并且不超过允许的最大电流,升流电路可以满足均流的最初设计要求。这个附加的均流电路改善了两个电流回路之间的均流性能,这样以来,线路、连接器以及其它器件的容差将不会导致我们的设计超出设计规范。

参考文献


如欲了解与本文有关的更多详情,您可以登录 www-s.ti.com/sc/techlit/ 以下的文献编号,下载 Acrobat Reader 文件。

文件名称


1. IEEE 802.3 标准,http://standards.ieee.org/getieee802/802.3.html

2. IEEE 802.3af PoE 高功率 PD 控制器,TPS2376-H 产品说明书. . . . . . . . . . slvs646。

3. 《使用 TPS2375/77-1 的高功率 PoE PD》,作者:Martin Patoka,应用报告. . . . . . . . . . slva225。

相关网站


https://www.ti.com.cn/power

https://www.ti.com.cn/product/cn/tps2376-h

https://www.ti.com.cn/product/cn/ucc3809-2