
Application Report
SPRA177A – August 2005

1

Using C to Access Data Stored in Program Memory on the
TMS320C54x DSP

David M. Alter DSP Applications - Semiconductor Group

ABSTRACT

Efficient utilization of available memory in a TMS320C54x DSP sometimes requires the
placement of data in program space memory (as opposed to data space memory).
However, accessing this data using the C programming language is problematic, since
the C-compiler provides no mechanism for accessing program space. This application
note presents a solution for accessing data stored in program space memory using C on
the TMS320C54x DSP. A C-callable library of six assembly code functions for accessing
data in program memory (including extended program memory) is also provided.

This application report contains project code that can be downloaded from this link.
http://www-s.ti.com/sc/psheets/spra177a/spra177a.zip

 Contents
Introduction ...2
Generating 23-bit Program Memory Pointers in C...2
The Code Download ...2

Download Package Contents..2
The PFUNC Code Library ...3
Example of PFUNC Library Use ...4

Constructing the Program Memory Data Values...5
References...5
Appendix A. PFUNC Function Library Technical Reference ..6
Revision History..12

Tables
Table 1. Description of Code Download Files..3
Table 2. PFUNC Library Functions..3

SPRA177A

2 Using C to Access Data Stored in Program Memory on the TMS320C54x DSP

Introduction
On TMS320C54x devices, it is sometimes desirable to place data in program space memory
rather than in data space memory. This is especially true on TMS320C54x devices that support
extended program space addressing. On such devices, programmers may exhaust the 64Kw of
data space memory, but still have an excess of program memory available. When working in
the C programming language however, it is not sufficient to simply link the data into the program
space, as the C-compiler expects all constants (and variables) to be in data memory. Further
complicating the problem is the fact that the C-compiler allocates only 16-bits for data pointers.
Therefore, if the data variables are linked to extended program memory (i.e. above 64Kw), the
compiler will not create a pointer containing the full 23-bit address.

This application reports presents a solution for accessing data in program memory using C.
First, a fully relocatable approach for getting the C-compiler to generate a 23-bit pointer to
program space is presented. Relocatable means that no hard-coding of extended program
memory addresses or pages is used. Next, a small library of six C-callable assembly functions
is given, along with example code showing usage of these functions.

Generating 23-bit Program Memory Pointers in C
The TMS320C54x Optimizing C-Compiler utilizes only 16-bits for data pointers (see Reference
1, revision F, page 5-6). This includes all labels and symbols that represent an address for any
data variable, structure, etc. The 16-bit pointers are sufficient for accessing data located in the
first 64Kw of program memory. However, in order to access data variables located in extended
program memory (i.e. above 64Kw), a method is needed to get the compiler to generate at least
a 23-bit pointer, which is the combined width of the 16-bit PC (program counter) plus the 7-bit
XPC (extended program counter) in the C54x CPU. The 23-bit pointer can then passed to a C-
callable assembly function, which can access the data at the specified program memory address
and perform the desired task.

The trick to getting the C-compiler to generate a full 23-bit address is to declare the data symbol
as a void function in the calling function. With the far memory model (compiler option -mf), the
C-compiler maintains 23 bits of address for the function. The actual function pointer occupies 2
words (32-bits) in the DSP memory, although only 23 bits are significant (the upper 9 bits are
zero).

The Code Download

Download Package Contents

A code download accompanies this application report. To obtain the download, go to the Texas
Instruments website, http://www.ti.com, and type in the literature number of this application
report in the search box. A description of each file in the download is given in Table 1.

SPRA177A

 Using C to Access Data Stored in Program Memory on the TMS320C54x DSP 3

Table 1. Description of Code Download Files

 File Name Description
 .pfunc\makenear.bat Windows batch file for building a PFUNC library with near memory model
 .pfunc\makefar.bat Windows batch file for building a PFUNC library with far memory model
 .\pfunc\include\pfunc.h C include file that supports the PFUNC libraries
 .\pfunc\lib\pfunc.lib near memory model function library
 .\pfunc\lib\pfunc_ext.lib far memory model function library
 .\pfunc\src\blkread.asm source file for PFUNC_blkRead() function
 .\pfunc\src\blkwrite.asm source file for PFUNC_blkWrite() function
 .\pfunc\src\strread.asm source file for PFUNC_strRead() function
 .\pfunc\src\strwrite.asm source file for PFUNC_strWrite() function
 .\pfunc\src\wordread.asm source file for PFUNC_wordRead() function
 .\pfunc\src\wordwrite.asm source file for PFUNC_wordWrite() function
 .\example\example.pjt C5000 Code Composer Studio v2.1 project file for the example
 .\example\main.c main() function for the example
 .\example\table.asm assembly code data table file for the example
 .\example\vc5416.cmd VC5416 DSP linker command file for the example (far memory model)
 .\example\Debug\example.map .map file from the pre-built example (far memory model)
 .\example\Debug\example.out pre-built example executable (far memory model)

The PFUNC Code Library

Six C-callable functions for manipulating data stored in program memory have been hand-coded
in TMS320C54x mnemonic assembly language for efficiency. These functions are:

Table 2. PFUNC Library Functions

 Function Name Description
 PFUNC_blkRead() copies a block from program memory to data memory
 PFUNC_blkWrite() copies a block from data memory to program memory
 PFUNC_strRead() copies a string from program memory to data memory
 PFUNC_strWrite() copies a string from data memory to program memory
 PFUNC_wordRead() copies a word from program memory to data memory
 PFUNC_wordWrite() copies a word from data memory to program memory

The heart of each function uses the READA or WRITA mnemonic assembly function to access
the data in program memory. Each function is described in greater detail in Appendix A of this
application report.

SPRA177A

4 Using C to Access Data Stored in Program Memory on the TMS320C54x DSP

To facilitate incorporation into the readers application, the functions have been packaged into
two different libraries. The library pfunc.lib has been built using the near memory model. The
library pfunc_ext.lib has been built using the far memory model. The reader should include the
correct library into his Code Composer project. A header file pfunc.h has also been provided
that contains a function prototype for each function. This file should be included in the C-source
file of any function that will be calling a library function. The libraries have been built using the
TMS320C54x Code Generation Tools v3.70 (included in C5000 Code Composer Studio v2.1).

Source code has been provided for each function in the event that the user needs to modify a
function or would like a basis for creating new functions. The source files make use of the built-
in assembler constant __far_mode to differentiate between far memory model and near memory
model. The __far_mode constant is set by the ASM500 assembler tool and also the CL500
compiler shell. It is set to 0 when the near memory model is used (no -mf option) and set to 1
when the far memory model is used (-mf assembler or compiler option). The provided batch
files makenear.bat and makefar.bat can be used to rebuild the near and far model PFUNC
function libraries from the source files at a command prompt. Usage is:

 makenear yourlib

or

 makefar yourlib

where "yourlib" is the name of the library you wish to create. The author chose the names
pfunc.lib for the near model library, and pfunc_ext.lib for the far model library, but you may use
any names you want. Alternately, you can simply include the modified source file directly into
your Code Composer Studio project, and not build a library at all.

Example of PFUNC Library Use

The .\example directory contains an example of PFUNC function use. This example uses the far
memory model, and hence uses the pfunc_ext.lib library. To use the example program, copy
the file .\pfunc\include\pfunc.h into the .\example directory. Then, start Code Composer Studio
and load the file example.pjt using the Project->Open menu command. You can then build and
run the example. Note that the linker command file vc5416.cmd is designed for a VC5416 DSP
target. If running on other than a VC5416 DSP (or the Code Composer Studio code simulator
configured for VC5416 DSP), the user will need to modify the linker command file accordingly.

When the program is run, the Stdout window in Code Composer Studio should show the
following:

SPRA177A

 Using C to Access Data Stored in Program Memory on the TMS320C54x DSP 5

If you encounter difficulties either loading the project or building the code, it is most likely a path
problem with your Code Composer Studio setup. A pre-built executable file
.\example\Debug\example.out has been provided which should produce the above Stdout
window when run on a VC5416 DSP. Use the File->Load Program menu command in Code
Composer Studio to directly load this executable file.

Here is what the function main() does. First, it reads string1 and string2 using the
PFUNC_strRead() function, and prints them to the Stdout window. Next, it overwrites string1
with the string2 using PFUNC_strWrite(), and then reads string1 back and prints it to Stdout. It
next reads string3 using the PFUNC_blkRead() function, and overwrites string2 with string3
using PFUNC_blkWrite(). Note that the terminating null character of a string is included in the
block length. Finally, main() reads the first 16-bit word in string1 using PFUNC_wordRead(),
and then overwrites this word in string1 with the value "5." The first word in string1 originally had
the value "115," which is the numerical value of the ASCII character 's', the first letter in the word
'string.'

Note that the string tmp_string must be declared of sufficient length to hold the copied program
memory strings. The PFUNC functions do not cross-check source and destination lengths, and
will overwrite other data if the destination length is smaller than the source string length or block
size.

Constructing the Program Memory Data Values

The program memory data values are best constructed using assembly language. The file
table.asm shows an example of how to do this. This particular example shows three strings
which are to be stored in program memory. If non-string data is desired (i.e. 16-bit words),
simply use the .int directive in place of the .char directive when declaring the data. The .sect
directive places this data in the initialized section called "table". The "table" section is linked to
program memory in the linker command file vc5416.cmd. The .def directive allows the named
labels to be accessed by code in other source files.

Note that the terminating zero has been manually added to the strings, since termination of
strings by a trailing zero (null character) is a C-language convention. The assembler does not
automatically add the zero. If non-string data is being stored in program memory, the
terminating zero is not needed.

References
1. TMS320C54x Optimizing C Compiler User's Guide (SPRU103)
2. TMS320C54x DSP Mnemonic Instruction Set (SPRU172)

SPRA177A

6 Using C to Access Data Stored in Program Memory on the TMS320C54x DSP

Appendix A. PFUNC Function Library Technical Reference

Note: The PFUNC data type is defined in the file .\include\pfunc.h. It is used as a matter of
convenience for function prototyping, since passed parameters of type PFUNC must be declared
as void function pointers, and not as PFUNC data types in the calling function.

 PFUNC_blkRead Copies a block from (extended) program memory to data memory

Function void PFUNC_blkRead(
 PFUNC addrProg,
 int *ptrData,
 unsigned int length
);

Arguments addrProg address of (extended) program memory source block
 PtrData pointer to data memory destination block

Return Value None

Description Copies a block of 16-bit words from (extended) program memory to

data memory. The source code for this function uses the built in
assembler constant __far_mode such that it can be assembled for
either the near or far memory model. If using the PFUNC libraries,
pfunc.lib is for near memory model, and pfunc_ext.lib is for far memory
model.

 This function is similar to PFUNC_strRead except that PFUNC_strRead

uses the terminating null character in a string to mark the end of the
block, whereas this function passes the length of the block as a
parameter.

Example #define N 20
 extern void addrProg(void);
 int ptrData[N];
 int length = N;
 PFUNC_blkRead(addrProg, ptrData, length);

SPRA177A

 Using C to Access Data Stored in Program Memory on the TMS320C54x DSP 7

 PFUNC_blkWrite Copies a block from data memory to (extended) program memory

Function void PFUNC_blkWrite(
 PFUNC addrProg,
 int *ptrData,
 unsigned int length
);

Arguments addrProg address of (extended) program memory destination block
 PtrData pointer to data memory source block

Return Value None

Description Copies a block of 16-bit words from data memory to (extended)

program memory. The source code for this function uses the built in
assembler constant __far_mode such that it can be assembled for
either the near or far memory model. If using the PFUNC libraries,
pfunc.lib is for near memory model, and pfunc_ext.lib is for far memory
model.

 This function is similar to PFUNC_strWrite except that PFUNC_strWrite

uses the terminating null character in a string to mark the end of the
block, whereas this function passes the length of the block as a
parameter.

Example #define N 20
 extern void addrProg(void);
 int ptrData[N];
 int length = N;
 PFUNC_blkWrite(addrProg, ptrData, length);

SPRA177A

8 Using C to Access Data Stored in Program Memory on the TMS320C54x DSP

 PFUNC_strRead Copies a string from (extended) program memory to data memory

Function void PFUNC_strRead(
 PFUNC addrProg,
 int *strData,
);

Arguments addrProg address of (extended) program memory source string
 PtrData pointer to data memory destination string

Return Value None

Description Copies a string from (extended) program memory to data memory. The

source code for this function uses the built in assembler constant
__far_mode such that it can be assembled for either the near or far
memory model. If using the PFUNC libraries, pfunc.lib is for near
memory model, and pfunc_ext.lib is for far memory model.

 This function is similar to PFUNC_blkRead except that

PFUNC_blkRead passes the length of the block as a parameter,
whereas this function uses the terminating null character in a string to
mark the end of the block.

Example #define N 20
 extern void addrProg(void);
 char strData[N];
 PFUNC_strRead(addrProg, strData);

SPRA177A

 Using C to Access Data Stored in Program Memory on the TMS320C54x DSP 9

 PFUNC_strWrite Copies a string from data memory to (extended) program memory

Function void PFUNC_strWrite(
 PFUNC addrProg,
 int *strData,
);

Arguments addrProg address of (extended) program memory destination string
 PtrData pointer to data memory source string

Return Value None

Description Copies a string from data memory to (extended) program memory. The

source code for this function uses the built in assembler constant
__far_mode such that it can be assembled for either the near or far
memory model. If using the PFUNC libraries, pfunc.lib is for near
memory model, and pfunc_ext.lib is for far memory model.

 This function is similar to PFUNC_blkWrite except that

PFUNC_blkWrite passes the length of the block as a parameter,
whereas this function uses the terminating null character in a string to
mark the end of the block.

Example #define N 20
 extern void addrProg(void);
 char strData[N];
 PFUNC_strWrite(addrProg, ptrData);

SPRA177A

10 Using C to Access Data Stored in Program Memory on the TMS320C54x DSP

 PFUNC_wordRead Copies a word from (extended) program memory to data memory

Function int PFUNC_wordRead(
 PFUNC addrProg
);

Arguments addrProg address of (extended) program memory source word

Return Value wordData destination word in data memory

Description Copies a single 16-bit word from (extended) program memory to data

memory. The source code for this function uses the built in assembler
constant __far_mode such that it can be assembled for either the near
or far memory model. If using the PFUNC libraries, pfunc.lib is for near
memory model, and pfunc_ext.lib is for far memory model.

Example extern void addrProg(void);
 int wordData;
 wordData = PFUNC_strRead(addrProg);

SPRA177A

 Using C to Access Data Stored in Program Memory on the TMS320C54x DSP 11

 PFUNC_wordWrite Copies a word from data memory to (extended) program memory

Function void PFUNC_wordWrite(
 PFUNC addrProg
 int wordData
);

Arguments addrProg address of (extended) program memory destination word
 wordData source word in data memory

Return Value none

Description Copies a single 16-bit word from (extended) program memory to data

memory. The source code for this function uses the built in assembler
constant __far_mode such that it can be assembled for either the near
or far memory model. If using the PFUNC libraries, pfunc.lib is for near
memory model, and pfunc_ext.lib is for far memory model.

Example extern void addrProg(void);
 int wordData;
 PFUNC_strRead(addrProg, wordData);

SPRA177A

12 Using C to Access Data Stored in Program Memory on the TMS320C54x DSP

Revision History

SPRA177A – July, 2005. Code change only. Fixed bug in PFUNC_blkWrite(). Changed section

name “table” to “mytable” in table.asm since “table” is a reserved name
in Code Composer Studio v3.1.

SPRA177 – March, 2002. Original

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2005, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

