
Application Report
SPRA772A – May 2006

1

DSP/BIOS Sizing Guidelines for
TMS320C2000/C5000/C6000 DSPs

Arnie Reynoso SDO Applications

ABSTRACT

The DSP/BIOS real-time kernel is a scalable library that allows application developers to control
how much of the real-time operating system is actually placed in target memory and to optimize
the tradeoff between memory usage and functionality.

This application report contains information on the size impact of using DSP/BIOS modules in
your application, as well as a number of hints and guidelines to help you optimize your
application’s use of memory. It highlights different aspects of the DSP/BIOS library that are
under your control and that impact the overall memory usage of the DSP/BIOS kernel.

As a DSP/BIOS user, you should be aware that it may be appropriate to change the way your
application is configured over the life of the project. For example, host/target communication can
be crucial during product development but may not be necessary when the application is
deployed, allowing a reduction in the final overhead size. To that end, some hints given in this
application report may not be applicable now, but may be relevant later.

Contents
1 DSP/BIOS Configuration Tool ..2
2 Creating a Minimal Footprint DSP/BIOS Application...3

2.1 Default Configuration...3
2.2 Base Configuration ..5

2.2.1 Disabling CLK and PRD ..6
2.2.2 Disabling the DSP/BIOS Instrumented Library ..6
2.2.3 Removing SYS Handling Functions...7
2.2.4 Reducing the System LOG Buffer ...7

3 Module Sizing Applications..8
3.1 Base Application..8
3.2 HWI Application ...8
3.3 CLK Application ...9
3.4 CLK Object Application..9
3.5 SWI Application ...9
3.6 SWI Object Application..9
3.7 PRD Application ..9
3.8 PRD Object Application ...10
3.9 TSK Application ...10
3.10 TSK Object Application..11
3.11 SEM Application ..11
3.12 SEM Object Application...12

SPRA772A

2 DSP/BIOS Sizing Guidelines for TMS320C2000/C5000/C6000 DSPs

3.13 MEM Application..12
3.14 Dynamic TSK application...12
3.15 Dynamic SEM application..13
3.16 RTA Application ...13

4 Module Dependency Table ...13
5 Measuring DSP/BIOS Footprint for Custom Applications...14

5.1 Using the Linker Map or XML Listing...14
5.2 Using Object File Display Utility and CG_XML Scripts ..15

6 Conclusion...17
7 References...17

Tables
Table 1. Module Dependencies...13
Table 2. Summary of Linker Section Names ...16

1 DSP/BIOS Configuration Tool
Because DSPs are used in such a wide range of applications—from small battery operated
devices to large multiprocessing systems—any general-purpose system software for DSPs must
be extremely flexible in both functionality and size.

The DSP/BIOS kernel is a run-time library that provides a wide range of real-time kernel services
broken up into different modules. Each of these modules can be linked in by a DSP application
or left out entirely. The key to this is DSP/BIOS’s configuration capability. DSP/BIOS can be
configured graphically or textually (using Tconf). Both work well inside Code Composer Studio.
You can statically (that is, prior to run time) configure an application to link in only the services it
actually needs. In this way, you can manage a memory-constrained application’s tradeoff
between the functionality available through DSP/BIOS and the overall memory footprint of the
application. The Configuration Tool allows you to configure different aspects of a particular
module so that it is optimized to work within the application. Therefore, the general-use
DSP/BIOS kernel can be transformed into an application-specific, run-time environment.

The tradeoffs between different DSP/BIOS modules and their impact on system memory can be
complex because applying a module usually requires support of other modules. For example,
the MBX module depends on (and therefore links in) the code from the SEM and QUE modules.

It is also important to realize that, even if a module’s code is linked in, it does not necessarily link
in the entire module, but typically only the functions referenced by the application—an
optimization that keeps the overall size impact of the DSP/BIOS kernel to a minimum.

Because of the complexity of these tradeoffs, it is important to understand that this application
report does not set up an analytical model of estimating DSP/BIOS overhead, but rather gives
some sizing scenarios based on a default configuration or a base configuration.

SPRA772A

 DSP/BIOS Sizing Guidelines for TMS320C2000/C5000/C6000 DSPs 3

2 Creating a Minimal Footprint DSP/BIOS Application
This section contains hints on how to use the Configuration Tool to lower the overhead of the
DSP/BIOS kernel. The actual size reduction of using these techniques depends on the specific
application’s configuration.

2.1 Default Configuration

Unlike previous versions, the 5.xx version of DSP/BIOS provides a simple way to create a new
configuration with minimal features enabled (that is, with Dynamic Memory Heaps, Real-Time
Analysis, RTDX, and TSK Manager disabled). Even with all these features disabled, there are a
few additional techniques that can be applied to further minimize DSP/BIOS code size usage.

The starting default configuration still includes message logging for execution tracking (LOG),
built-in statistics gathering (STS), timer configuration and usage (CLK), interrupt vector handling
(HWI), and basic system services (SYS) for halting and printing program execution.

All the values shown for the default configurations include code and data footprint sizing for the
entire application. The application contains an empty main() function. The data values include
the necessary C-initialized (.cinit) and uninitialized records (.bss) used by the application.

The default DSP/BIOS configuration file (*.tcf) calls the utils.loadPlatform() and the prog.gen() to
generate the appropriate files as shown below:

utils.loadPlatform("ti.platforms.dsk6416");

// !GRAPHICAL_CONFIG_TOOL_SCRIPT_INSERT_POINT!
if (config.hasReportedError == false) {
 prog.gen();
}

To create a default configuration yourself, you can use a similar script (as shown above) or have
one created for you. To have one created in CCStudio, choose File->New->DSP/BIOS
Configuration, select the platform you’d like to start from, and disable (un-check) features under
the Enable DSP/BIOS Features as shown in the following figure:

SPRA772A

4 DSP/BIOS Sizing Guidelines for TMS320C2000/C5000/C6000 DSPs

The DSP/BIOS features you disable have the following functionality:

• Dynamic Memory Heaps. The DSP/BIOS kernel allows applications to dynamically
allocate objects and storage areas in a heap area using the XXX_create() functions and the
MEM_alloc(), MEM_calloc() and MEM_valloc() functions. Removing this functionality from
the kernel allows the linker to remove the XXX_create functions and the MEM module code
from the executable. The linker does not set up a memory heap area.

• Real-Time Analysis. The DSP/BIOS kernel provides the ability to extract real-time analysis
(RTA) data from running applications. In this way, you can get visibility into performance, as
well as insight into how the application runs on a per-thread and ISR basis. RTA data is
extracted implicitly from a version of the DSP/BIOS library instrumented for this purpose and
explicitly by developers who embed API calls in the application. The data is sent to the PC
host when the RTA plug-ins running in CCStudio on the PC poll the target. This is done
through background IDL threads that have the lowest priority in the DSP system. Although
real-time analysis can be valuable (or even critical) during software development, it impacts
the overall memory requirements to accommodate the instrumented DSP/BIOS library, as
well as the RTA APIs and the host/target communication infrastructure.

SPRA772A

 DSP/BIOS Sizing Guidelines for TMS320C2000/C5000/C6000 DSPs 5

• RTDX. The DSP/BIOS kernel includes Real-Time Data Exchange (RTDX) functionality.
RTDX provides a mechanism for applications to move data between the DSP and host PC,
without stopping the DSP and incurring only a minimal amount of intrusion. The RTDX
library uses a scan-based emulator to move data via the JTAG interface.

• TSK Manager. The DSP/BIOS TSK manager allows applications to create and manipulate
independent threads of control. Many DSP/BIOS applications may not take advantage of
this at all, in favor of implementing run-to-completion threads using software interrupts
(SWIs) or just implementing a single-threaded control loop. Disabling the TSK manager
conserves system memory by eliminating unneeded DSP/BIOS code, as well as eliminating
the need for a task stack to be allocated.

2.2 Base Configuration

Defining what constitutes a base DSP/BIOS setup is somewhat arbitrary. For the purpose of this
document, a base configuration contains various techniques to minimize footprint of DSP/BIOS
applications. The following Tconf configuration script illustrates the base setup as an example:

utils.loadPlatform("ti.platforms.dsk6416");

/* Setting system stack size to 1k 8-bit bytes */
bios.MEM.STACKSIZE = 0x0400;

/* Disabling PRD and CLK */
bios.PRD.USECLK = 0;
bios.CLK.ENABLECLK = 0;

/* Disable the DSP/BIOS instrumented library */
bios.GBL.INSTRUMENTED = 0;
bios.GBL.ENABLEALLTRC = 0;

/* Removing SYS Handle functions */
bios.SYS.TRACESIZE = 0;
bios.SYS.ABORTFXN = prog.extern("UTL_halt");
bios.SYS.ERRORFXN = prog.extern("UTL_halt");
bios.SYS.EXITFXN = prog.extern("UTL_halt");
bios.SYS.PUTCFXN = prog.extern("FXN_F_nop");

/* Reducing the System LOG buffer */
bios.LOG_system.bufLen = 0;

// !GRAPHICAL_CONFIG_TOOL_SCRIPT_INSERT_POINT!

if (config.hasReportedError == false) {
 prog.gen();
}

The following subsections describe in detail each of the above statements in the configuration
script. The base configuration, as in the default case, doesn’t make any DSP/BIOS API calls and
contains an empty main() function only.

NOTE: Values for the system stack are configured to 1 K 8-bit bytes for C6000 platforms and
512 16-bit words on all other platforms. This maintains consistency across ISAs (instruction set
architectures). On ‘C55x, the system stack and the stack both total 512 16-bit words.

SPRA772A

6 DSP/BIOS Sizing Guidelines for TMS320C2000/C5000/C6000 DSPs

2.2.1 Disabling CLK and PRD

The CLK module allows an application to invoke functions on a periodic basis. This module
provides a real-time clock, and can be used in conjunction with the Real Time Analysis (RTA)
tools to measure periods of time or to add a timestamp to event logs.

The Periodic module (PRD) allows periodic execution of program functions based on the CLK
module. By default PRD is driven by a CLK instance. All PRDs run in the context of PRD_swi,
which is, itself, a software interrupt (SWI).

By disabling the use of CLK to drive the PRD, the CLK object used by the PRD (PRD_clock) is
removed. The SWI object is also removed when no PRD objects are configured.

If no other objects are dependent on CLK, the module can also be disabled. This brings
significant savings since neither the SWI nor the CLK module are linked in (if no other SWIs are
used). The following configuration statements were added to the default configuration for the
base configuration:

bios.PRD.USECLK = 0; // remove dependency of PRD on CLK so CLK can be disabled
bios.CLK.ENABLECLK = 0;

Note that the TSK manager, when enabled, uses PRD to drive TSK ticks. The TSK ticks are
responsible for advancing the system alarm clock to ready any TSK whose timeout interval has
expired (for example, via TSK_sleep or SEM_pend). If the CLK module is not used to advance
the system clock, the application may call TSK_tick to advance the system clock.

2.2.2 Disabling the DSP/BIOS Instrumented Library

The DSP/BIOS kernel instruments a few modules (TSK, SEM) to gather additional statistical
information that can be seen with the CCStudio DSP/BIOS tools (DSP/BIOS -> Statistics View).
By leveraging the non-instrumented DSP/BIOS library, code savings can be obtained in the case
where the TSK or SEM module is being used.

Tracing by the TRC module is also disabled since RTA is not being used. This disables RTA
tracing when the application is loaded. Tracing can be re-enabled through the RTA Control
Panel in CCStudio or by calling TRC_enable in the application.

The following configuration statements were added to the default configuration for the base
configuration:

bios.GBL.INSTRUMENTED = 0; // Disable the instrumented kernel library
bios.GBL.ENABLEALLTRC = 0; // Disable the TRC mask

NOTE: The footprint savings, when disabling the use of the DSP/BIOS instrumented library, is
seen only when the TSK and SEM modules are being used in the application. Otherwise, either
library has the same footprint impact. When using the non-instrumented version of the library,
the generated DSP/BIOS linker command file (*cfg.cmd) contains a reference to the
bios_NONINST.a## instead of the bios.a## (## values are architecture dependent).

SPRA772A

 DSP/BIOS Sizing Guidelines for TMS320C2000/C5000/C6000 DSPs 7

2.2.3 Removing SYS Handling Functions

The SYS module provides a set of basic system services such as halting program execution and
printing formatted text. The SYS module is used by other DSP/BIOS modules in lieu of similar C
library functions. The SYS module default handlers use DSP/BIOS UTL functions to perform
these tasks.

Users can set their own functions for the SYS module to call. In this way, developers can control
what handler functions are called by specifying their own custom handler functions, or specifying
a smaller function such as the DSP/BIOS UTL_halt function.

The Configuration Tool controls the handler functions for the following SYS module functions:

• SYS_exit(), which is used for orderly program terminations.

• SYS_abort(), which is used to terminate the program from a catastrophic situation.

• SYS_error(), which is used to handle kernel and application error conditions.

• SYS_printf(), SYS_sprintf(), SYS_vprintf() and SYS_vsprintf(), which are used to output
formatted data.

The DSP/BIOS kernel uses the SYS_error() function in the modules’ XXX_create() functions, in
the MEM module functions, and by the SIO stream input and output manager, so an application
taking advantage of these services should have some kind of SYS_error() handler in place.

Like all other functions, the SYS_printf() family of functions is linked into an application only if
any of them are used. We recommend that applications avoid using the SYS_printf() family of
functions entirely in favor of the LOG_printf() function, which is several orders of magnitude more
efficient in terms of both memory usage and CPU cycles.

The following script lines were added to the default configuration to reduce the base
configuration footprint:

bios.SYS.TRACESIZE = 0; // Reduce SYS buffer size to 0 (zero)
bios.SYS.ABORTFXN = prog.extern("UTL_halt"); // Set SYS functions to UTL_halt
bios.SYS.ERRORFXN = prog.extern("UTL_halt");
bios.SYS.EXITFXN = prog.extern("UTL_halt");
bios.SYS.PUTCFXN = prog.extern("FXN_F_nop");// Set the SYS putC function to a NOP

2.2.4 Reducing the System LOG Buffer

The LOG module is used by the DSP/BIOS system to log system execution information. The
default configuration sets the LOG buffer size to 64 (words) of the LOG_system object. User
LOG instances also default to 64 words (or 16 LOG records). Though LOG_system can’t be
removed, the size of the LOG buffer can be modified. The following script line was added to
reduce to LOG buffer size to zero (0).

bios.LOG_system.bufLen = 0; // Set system LOG buffer to zero (0)

NOTE: Reducing the LOG_system buffer size provides only data savings. There is no code
savings.

SPRA772A

8 DSP/BIOS Sizing Guidelines for TMS320C2000/C5000/C6000 DSPs

3 Module Sizing Applications
The applications described here are used to measure the sizing impact of adding various
modules. The applications build upon each other. This means that the configuration modification
and DSP/BIOS API calls used in one section are subsequently used in the following sections,
unless otherwise specified.

The sizing information for DSP/BIOS 5.30 or greater is provided in the Results.htm file, which is
installed with DSP/BIOS. These sizing values are also available on the DSP/BIOS download
page (https://www-a.ti.com/downloads/sds_support/targetcontent/bios/index.html) for DSP/BIOS
5.20.05 or greater by following the DSP/BIOS Documentation→Results link. The sizing values
contain information for all the following applications on all supported platforms.

The BIOS_INSTALL_DIR\packages\ti\bios\benchmarks\html\Results.html file in the 5.30 or
greater DSP/BIOS release distribution contains links to HTML files that contain size information
for the following applications on all supported platforms. All the values in the result tables are in
8-bit bytes. Though some platforms don't support 8-bit byte access, the values are displayed in
this format to maintain consistency across architectures.

3.1 Base Application
This is the starting point for our measurements. The configuration used here is identical to the
base configuration described in Section 2.2.

3.2 HWI Application
In the HWI application, support for the HWI dispatcher has been added. Enabling the dispatcher
allows the application to call an Interrupt Service Routine (ISR) without needing to call other
functions to save the register values during context switching. (ISR functions can be written in
C.) Using the HWI dispatcher creates a one time code/data impact on the application. The
dispatcher is enabled on a per-interrupt basis from the individual HWI property pages. The HWI
Dispatcher is automatically linked into the application if RTDX is enabled or a CLK object is
created.

To the base configuration script, the following has been added:

bios.HWI.instance("HWI_INT8").useDispatcher = 1;
bios.HWI.instance("HWI_INT8").fxn = prog.extern("FXN_F_nop"); // Call to a NOP function

For the ‘C54x platform the following script lines were used:

bios.HWI.instance("HWI_SINT4").useDispatcher = 1;
bios.HWI.instance("HWI_SINT4").fxn = prog.extern("FXN_F_nop");

The application also makes a call to the following DSP/BIOS API:

• HWI_dispatchPlug()

https://www-a.ti.com/downloads/sds_support/targetcontent/bios/index.html

SPRA772A

 DSP/BIOS Sizing Guidelines for TMS320C2000/C5000/C6000 DSPs 9

3.3 CLK Application
In the CLK application, the CLK manager is enabled and a CLK object has been added to the
HWI application configuration. The CLK module is processor-dependent; therefore overhead
values vary slightly between processors. The following configuration script lines were added:

bios.CLK.ENABLECLK = 1;
bios.CLK.create("CLK0");

The application also makes a call to the following DSP/BIOS API:

• CLK_gethtime()

3.4 CLK Object Application

In the CLK object application, an additional CLK object has been created to illustrate the size
impact of each CLK object. The following configuration script line was added to CLK application:

bios.CLK.create("CLK1");

3.5 SWI Application

In the SWI application, a single SWI object has been added to the CLK object application
configuration. The following configuration script lines were added:

bios.SWI.create("SWI1");
bios.SWI.instance("SWI1").priority = 1;

The application also makes a call to the following DSP/BIOS API:

• SWI_post()

3.6 SWI Object Application

In the SWI object application, an additional SWI object has been created to illustrate the size
impact of each SWI object. The following configuration script lines were added to SWI
application:

bios.SWI.create("SWI2");
bios.SWI.instance("SWI2").priority = 1;

3.7 PRD Application

In the PRD application, the PRD module was enabled to use the CLK module. A PRD object has
also been added to the SWI object application configuration. The following configuration script
lines were added:

bios.PRD.USECLK = 1;
bios.PRD.create("PRD0");

SPRA772A

10 DSP/BIOS Sizing Guidelines for TMS320C2000/C5000/C6000 DSPs

Note: If a function executes at the frequency of the timer interrupt, it may be more efficient to
create a CLK object to run the function rather than a PRD object. The reason for this is that CLK
objects are implemented to run off the timer’s hardware interrupt, while PRD objects are
implemented as software interrupts (SWI). The caveat to this is that PRD objects cannot be
replaced with CLK objects in all circumstances—for example, when the execution time of the
function being called is long (that is, greater than or equal to half the timer interrupt rate).

The application also makes a call to the following DSP/BIOS API:

• PRD_getticks()

3.8 PRD Object Application

In the PRD object application, an additional PRD object has been created to illustrate the size
impact of each PRD object. The following configuration script line was added to PRD application:

bios.PRD.create("PRD1");

3.9 TSK Application

In the TSK application, the TSK module was enabled and a TSK object has been added to the
PRD object application configuration. Enabling the TSK module creates an IDL task object. All
TSK objects created statically in this application are set to a stack size of 512 bytes. (Though
some platforms don't support 8-bit byte access, the application is configured accordingly to
maintain size consistency across architectures.) The TSK stack sizes for each TSK can be
adjusted accordingly (see the TSK Module section in the DSP/BIOS API Reference for more
information). The following configuration script lines were added:

bios.TSK.ENABLETSK = 1; // Enable the TSK module

/* Set TSK stacks of 512 (8-bit) bytes */
bios.TSK.instance("TSK_idle").stackSize = 0x100; // config is in (16-bit) words

bios.TSK.create("TSK0");
bios.TSK.instance("TSK0").stackSize = 0x100; // config is in (16-bit) words

For ‘C6000 platforms, the following script lines were used:

bios.TSK.ENABLETSK = 1; // Enable the TSK module

/* Set TSK stacks of 512 (8-bit) bytes */
bios.TSK.instance("TSK_idle").stackSize = 0x200; // config is in (8-bit) bytes

bios.TSK.create("TSK0");
bios.TSK.instance("TSK0").stackSize = 0x200; // config is in (8-bit) bytes

SPRA772A

 DSP/BIOS Sizing Guidelines for TMS320C2000/C5000/C6000 DSPs 11

For ‘C55x platforms the following script lines were used:

bios.TSK.ENABLETSK = 1; // Enable the TSK module

/* Set sum of TSK stack and sysstack sizes to 512 (8-bit bytes) */

bios.TSK.instance("TSK_idle").stackSize = 0x0c0; // config is in (16-bit) words
bios.TSK.instance("TSK_idle").sysStackSize = 0x040; //config is in (16-bit) words

bios.TSK.create("TSK0");
bios.TSK.instance("TSK0").stackSize = 0x0c0; //config is in (16-bit) words
bios.TSK.instance("TSK0").sysStackSize = 0x040; //config is in (16-bit) words

The application also makes a call to the following DSP/BIOS API:

• TSK_yield()

3.10 TSK Object Application

In the TSK object application, an additional TSK object has been created to illustrate the size
impact of each TSK object. The following configuration script lines were added to the TSK
application:

/* Set TSK stack of 512 (8-bit) bytes */
bios.TSK.create("TSK1");
bios.TSK.instance("TSK1").stackSize = 0x100; // config is in (16-bit) words

For C6000 platforms, the following script lines were used:

/* Set TSK stack of 512 (8-bit) bytes */
bios.TSK.create("TSK1");
bios.TSK.instance("TSK1").stackSize = 0x200; // config is in (8-bit) bytes

For ‘C55x platforms, the following script lines were used:

/* Set sum of TSK stack and sysstack sizes to 512 (8-bit bytes) */
bios.TSK.create("TSK1");
bios.TSK.instance("TSK1").stackSize = 0x0c0; //config is in (16-bit) words
bios.TSK.instance("TSK1").sysStackSize = 0x040; //config is in (16-bit) words

3.11 SEM Application

In the SEM application, a SEM object has been added to the TSK object application
configuration. The following configuration script line was added:

bios.SEM.create("SEM0");

The application also makes a call to the following DSP/BIOS APIs:

• SEM_post()

• SEM_pend()

SPRA772A

12 DSP/BIOS Sizing Guidelines for TMS320C2000/C5000/C6000 DSPs

3.12 SEM Object Application

In the SEM object application, an additional SEM object has been created to illustrate the size
impact of each SEM object. The following configuration script line was added to SEM
application:

bios.SEM.create("SEM1");

3.13 MEM Application

In the MEM application, the configuration is enabled to use memory heaps and a heap of 4 KB
was added to the SEM object application configuration. (Though some platforms don't support 8-
bit byte access, the application is configured accordingly to maintain size consistency across
architectures.) The following configuration script lines were added:

bios.MEM.NOMEMORYHEAPS = 0; //Enable Memory Heap usage

bios.MEM.instance("IRAM").createHeap = 1; // Create a Memory Heap in IRAM
bios.MEM.instance("IRAM").heapSize = 0x1000; // Set size of Memory Heap

bios.MEM.BIOSOBJSEG = prog.get("IRAM"); // Set BIOS Objects to IRAM heap
bios.MEM.MALLOCSEG = prog.get("IRAM"); // Set malloc/free to IRAM heap

bios.TSK.STACKSEG = prog.get("IRAM"); // Set dynamic TSK stacks to IRAM heap

For ‘C54x, ‘C55x, and ‘C28x, the heap values in the configuration file are specified in 16-bit
words as follows:

bios.MEM.instance("DARAM").heapSize = 0x0800; // Values are in 16-bit words

The application also makes a call to the following DSP/BIOS APIs:

• MEM_alloc()

• MEM_free()

3.14 Dynamic TSK application

In the dynamic TSK application, DSP/BIOS run-time APIs create and delete a TSK. Creating a
TSK dynamically (that is, at run-time) doesn’t require any changes to the configuration; it uses
the same configuration as the MEM application. The only dependency, when using dynamically-
created objects, is that a heap must be configured in order to successfully create the TSK object.
The application makes a call to the following DSP/BIOS APIs:

• TSK_create()

• TSK_delete()

NOTE: Using the Configuration Tool to create static objects at design-time rather than dynamic
objects at run-time allows the application to forego linking in the object creation and deletion
APIs, and will also save the overhead of embedding these calls in your initialization and
termination routines.

SPRA772A

 DSP/BIOS Sizing Guidelines for TMS320C2000/C5000/C6000 DSPs 13

3.15 Dynamic SEM application

In the dynamic SEM application, DSP/BIOS run-time APIs are called to create and delete a
SEM. As with the dynamic TSK application, no changes were required to the configuration. The
application used the dynamic TSK application configuration and makes an additional call to the
following DSP/BIOS APIs:

• SEM_create()

• SEM_delete()

3.16 RTA Application

In the RTA application, all real-time analysis features are enabled, including the use of RTDX
and the DSP/BIOS instrumented kernel library. The system LOG buffer size is set to 1 KB. The
following configuration script lines were added to the MEM application configuration:

bios.GBL.ENABLEINST = 1; // Enable Real-time Analysis
bios.GBL.INSTRUMENTED = 1; // Enable the use of the BIOS instrumented kernel
bios.GBL.ENABLEALLTRC = 1; // Enable all TRC mask logging

bios.enableRtdx(prog); // Built-in function to enable RTDX if available on
 // the platform

bios.LOG_system.bufLen = 1024; // Set system LOG buffer to 1k

4 Module Dependency Table
The table below shows the module dependencies for each of the previously described
applications.

Table 1. Module Dependencies

Module/Instance Dependent Modules Note
HWI application HWI, SWI SWI is used when HWI dispatcher is

enabled.
One time code and data impact when using
the HWI dispatcher.

CLK & CLK Object
application

HWI, SWI CLK size is processor-dependent (values
may vary by processor).
CLK objects require the use of the HWI
dispatcher.

SWI & SWI Object
Application

STS STS is used in SWI statistics gathering.

PRD Application SWI, STS, CLK (depends
on configuration)

PRD uses the CLK module by default (may
be changed in the configuration).
STS is used in PRD for statistics gathering.

TSK & TSK Object
Application

SWI, STS (not used if non-
instrumented kernel is
selected), SEM (if
TSK_sleep is called)

Enabling module creates a TSK_idle
function.
TSK_idle stack is set to 512 bytes.
TSK stacks are set to 512 bytes.

SPRA772A

14 DSP/BIOS Sizing Guidelines for TMS320C2000/C5000/C6000 DSPs

Module/Instance Dependent Modules Note
SEM & SEM Object
Application

QUE

MEM Application None Requires a heap.
Dynamic TSK
application

MEM Requires a MEM heap to create the object.

Dynamic SEM
application

MEM Requires a MEM heap to create to object.

RTA Application None

5 Measuring DSP/BIOS Footprint for Custom Applications
This section explains how we measured the footprint of the sample applications described in
Section 3 using a suite of automated tools.

5.1 Using the Linker Map or XML Listing

As of CGT version >= 5.0 (or CGT 3.x for ‘C55x) the code generation tools can create an XML
listing file at link time in addition to a map file. We highlight this since parsing XML is far more
robust than parsing the text-based map file.

The –m linker option generates a map file. The –xml_link_info option generates an equivalent
representation in XML. In CCStudio, you can select this via Project–>Options ->Linker tab ->
Advanced and filling in the fields for the XML Link info file.

Both the map and the XML file can be used to see how each memory section is allocated, and
which software components are using them.

SPRA772A

 DSP/BIOS Sizing Guidelines for TMS320C2000/C5000/C6000 DSPs 15

5.2 Using Object File Display Utility and CG_XML Scripts

The Object File Display utility (ofdxx.exe) can be used to view the content of object files,
executables, and/or archive libraries in human readable or XML format. The utility is included
with the Code Composer Studio code generation tools. It can be invoked from the command
prompt (DOS) shell.

• Several Perl scripts have been developed by TI, and are delivered in a package called
cg_xml. These scripts do useful things with the XML output such as generating boot
images, etc. The scripts, in particular sectti.pl, were used to generate most of the sizing data
here. This and other useful code generation XML parsing scripts are provided at the
following web site: https://www-a.ti.com/downloads/sds_support/applications_packages/index.htm

• The sectti.pl prints the name, size, and base address of each section in an object (.obj),
executable (.out), or library (.lib) file. The output file can be either a text format or a CSV
(coma separated values). For example:

https://www-a.ti.com/downloads/sds_support/applications_packages/index.htm

SPRA772A

16 DSP/BIOS Sizing Guidelines for TMS320C2000/C5000/C6000 DSPs

Table 2. Summary of Linker Section Names

Section Name Description
.args Arguments passed to main() (i.e., argc, argv and envp)
.bios DSP/BIOS code
.bss Global and static variables
.cinit Initialization tables for global and static variables
.const Explicitly initialized global and static constant variables and string literals
.hwi_vec Hardware interrupt vector table
.module DSP/BIOS module objects (.clk, .hst, .idl, etc.)
.module* Data associated with a DSP/BIOS module object
.pinit Table of initialization functions
.stack Boot stack
.switch C switch statement tables

SPRA772A

 DSP/BIOS Sizing Guidelines for TMS320C2000/C5000/C6000 DSPs 17

Section Name Description
.sysinit System initialization code
.text DSP/BIOS and application executable code
.trcinit Initialization records for DSP/BIOS TRC module

6 Conclusion
The sizing information for DSP/BIOS 5.30 or greater is provided in the Results.htm file, which is
installed with DSP/BIOS. These sizing values are also available on the DSP/BIOS download
page (https://www-a.ti.com/downloads/sds_support/targetcontent/bios/index.html) for DSP/BIOS
5.20.05 or greater by following the DSP/BIOS Documentation→Results link. The sizing values
contain information for all the following applications on all supported platforms.

Size data is provided in the HTML files for the applications described in this document. This
information provides an estimate of the DSP/BIOS footprint for a few sample applications. Since
each application is unique, techniques described in Section 5 can be used to determine the
exact footprint impact.

7 References
1. TMS320 DSP/BIOS User’s Guide (SPRU423)

2. TMS320C28x DSP/BIOS API Reference Guide (SPRU625)

3. TMS320C5000 DSP/BIOS API Reference Guide (SPRU404)

4. TMS320C6000 DSP/BIOS API Reference Guide (SPRU403)

https://www-a.ti.com/downloads/sds_support/targetcontent/bios/index.html

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to
discontinue any product or service without notice. Customers should obtain the latest relevant information
before placing orders and should verify that such information is current and complete. All products are sold
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent
TI deems necessary to support this warranty. Except where mandated by government requirements, testing
of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible
for their products and applications using TI components. To minimize the risks associated with customer
products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,
or process in which TI products or services are used. Information published by TI regarding third-party
products or services does not constitute a license from TI to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or
other intellectual property of the third party, or a license from TI under the patents or other intellectual
property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Interface interface.ti.com Digital Control www.ti.com/digitalcontrol
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony
 Video & Imaging www.ti.com/video
 Wireless www.ti.com/wireless

Mailing Address: Texas Instruments
 Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/lpw
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	DSP/BIOS Sizing Guidelines for TMS320C2000/C5000/C6000 DSPs
	1 DSP/BIOS Configuration Tool
	2 Creating a Minimal Footprint DSP/BIOS Application
	2.1 Default Configuration
	2.2 Base Configuration
	2.2.1 Disabling CLK and PRD
	2.2.2 Disabling the DSP/BIOS Instrumented Library
	2.2.3 Removing SYS Handling Functions
	2.2.4 Reducing the System LOG Buffer

	3 Module Sizing Applications
	3.1 Base Application
	3.2 HWI Application
	3.3 CLK Application
	3.4 CLK Object Application
	3.5 SWI Application
	3.6 SWI Object Application
	3.7 PRD Application
	3.8 PRD Object Application
	3.9 TSK Application
	3.10 TSK Object Application
	3.11 SEM Application
	3.12 SEM Object Application
	3.13 MEM Application
	3.14 Dynamic TSK application
	3.15 Dynamic SEM application
	3.16 RTA Application

	4 Module Dependency Table
	5 Measuring DSP/BIOS Footprint for Custom Applications
	5.1 Using the Linker Map or XML Listing
	5.2 Using Object File Display Utility and CG_XML Scripts

	6 Conclusion
	7 References

