
Application Report
 SPRAA19A — August 2005

1

Power Management in an RF5 Audio
Streaming Application Using DSP/BIOS

Vincent Wan, Texas Instruments
Ezell Young

ABSTRACT

Embedded applications commonly run in an environment where power consumption by
the DSP and its peripherals needs to be minimized. However, since DSP programs also
need to meet time deadlines, DSP power management can be a challenge.

The example provided with this application note showcases several power management
techniques you can leverage in a DSP/BIOS-enabled application. As with most software
techniques, no one size fits all. You should decide which techniques make sense for your
own application.

The application makes use of the DSP/BIOS PWRM module, and is based on Reference
Framework Level 5. As provided, the application performs audio streaming on a 5509A
EVM PLUS board.

Contents
1 The Need for DSP Power Management... 2

1.1 Common Terms and Principles... 4
2 Running the Example Application... 4

2.1 Software Requirements .. 4
2.2 Hardware Requirements... 5
2.3 Hardware Setup.. 5
2.4 Building the Application in CCStudio... 6
2.5 Running the Application in CCStudio .. 6

3 Application Structure... 7
3.1 Data Path and DIP Switches... 7
3.2 Application’s State Machine.. 8
3.3 Module Hierarchy ... 9

3.3.1 LOAD Module ... 10
3.4 Directory Structure.. 11

4 Power Management Techniques ... 12
4.1 Boot-Time Power Reduction Function .. 12
4.2 Gating Off Clock Domains During DSP/BIOS Idle Loop.. 13
4.3 Voltage and Frequency Scaling .. 14

4.3.1 Static Scaling .. 14
4.3.2 Dynamic Scaling ... 15
4.3.3 Latency Issues in Voltage and Frequency Scaling .. 17

4.4 CPU Sleep and Wake-Up ... 18

SPRAA19A

2 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS

5 System-Level Considerations and Other General Techniques ... 19
5.1 Use Memory Closest to the CPU .. 19
5.2 Optimize Code Size and Performance.. 20
5.3 Know Your Peripherals ... 20

6 Portability.. 20
7 Power Management Quick Reference... 21
8 Conclusion.. 21
9 References.. 22
Appendix A: Power Measurements .. 23
Appendix B: Sleep Mode Latencies.. 27

Figures
Figure 1. PWRM in an Application�s Architecture... 3
Figure 2. Hardware Arrangement for Example Application.. 5
Figure 3. Application Data Path.. 8
Figure 4. Application State Machine .. 9
Figure 5. Modules Used in Application.. 10
Figure 6. CPU Load Calculation in LOAD Module... 10
Figure 7. Directory Structure .. 11
Figure 8. Active Power Consumption Comparison with VFS Using Fixed Voltage 14
Figure 9. Latencies When Using VF Scaling.. 17
Figure 10. Sleep and Wake-Up Action Sequence.. 18

Tables
Table 1. DIP Switches (S2) .. 7
Table 2. Questions for Power Management Design .. 21
Table 3. Power Measurements in Passthrough Mode... 23
Table 4. Power Measurements in G.726 Mode... 25
Table 5. Comparison Between Idle and Sleep Modes ... 26
Table 6. Sleep Mode Latencies in Number of Clock Cycles.. 27

1 The Need for DSP Power Management
Power management is a hot area of research these days, as devices become smaller, lighter,
and more feature-loaded. Beyond protecting the environment, there are many practical reasons
to be interested in minimizing power use in embedded software applications:

• To allow a portable, battery-operated device to function longer between charges.

• To reduce heat generation.

• To allow for increased component density, resulting in a reduction in product size.

• To reduce the cost of a product.

• To reduce battery costs for users.

• To obtain approval from the FCC.

 SPRAA19A

 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS 3

Since the DSP is a core component in your design, it is important to minimize power
consumption by the DSP and the peripherals it controls. DSP programs generally need to meet
hard, critical time deadlines; consequently, power management can be more of a challenge on a
DSP device. It is important that power management techniques not result in an application that
misses real-time deadlines, and great care is needed to ensure that such problems do not occur.

Fortunately, Texas Instruments is providing support for DSP software power management to
simplify the process of saving power. At the heart of this is the DSP/BIOS Power Manager
(PWRM) module, which provides kernel-level APIs to reduce the power consumption of your
application.

Figure 1. PWRM in an Application�s Architecture

The PWRM module is a DSP/BIOS module that lets you reduce the power consumption of your
application. By providing a set of easy-to-use APIs, it helps any DSP/BIOS user add power
management into their design. PWRM interfaces directly to the DSP hardware by writing and
reading configuration registers, and through a platform-specific Power Scaling Library (PSL) that
controls the CPU clock rate and voltage-regulation circuitry. The PSL isolates PWRM and the
rest of the application from low-level implementation details of the frequency and voltage control
hardware.

A highly relevant paper is "Power-Optimizing Embedded Applications", Proceedings of the
Embedded Systems Conference (See Reference 1). It contains ideas for including power
management as a core consideration in both your hardware and software designs, which are the
foundation for some of the techniques described in this application note. Details on the PWRM
module can be found in TMS320C5000 DSP/BIOS Application Programming Interface (API)
Reference Guide, SPRA404J, and TMS320 DSP/BIOS User’s Guide, SPRU423F (References 2
and 3). Documentation for the PSL module can be found in Reference 4.

This application note describes power-saving techniques that can be applied using the PWRM
module. An audio-streaming application is supplied as an example to illustrate the use of these
techniques and of the PWRM module.

TMS320 C55x DSP

driver driver PSL

DSP/BIOS Kernel

CLK

PWRM

Real-Time
Threads

video audio speech control
thread

. . .

SPRAA19A

4 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS

1.1 Common Terms and Principles

The total power consumption of a CMOS circuit is the sum of both active and static power
consumption (see Reference 7 for more detail):
P total = Pactive + Pstatic

Active power consumption occurs when the circuit is active, switching from one logic state to
another. Active power consumption is caused both by switching current (that needed to charge
internal nodes) and through current (that which flows when both P and N-channel transistors are
both momentarily on). Active power consumption is related to voltage and frequency by the
following relation:
Pactive ~ C x F x V2 x Nsw

where C is the dynamic capacitance, F is the switching frequency, V is the supply voltage, and
Nsw is the number of bits switching. An additional relationship is that voltage (V) determines the
maximum switching frequency (F) for stable operation.

Static power consumption is the component that occurs even when the circuit is not switching,
due to transistor leakage. It is related to voltage as follows:
Pstatic ~ V x Iq

where V is the supply voltage and Iq is the leakage current.

2 Running the Example Application
The audio-streaming application provided with this application note is based on the Reference
Framework Level 5 example application (See Reference 5). It demonstrates techniques you can
apply to your next power-aware DSP program. It leverages DSP/BIOS—and the PWRM module
in particular—to control power consumption by the DSP and its peripherals.

2.1 Software Requirements

The following software is needed to run the audio-streaming application:
• Code Composer Studio (CCS) 3.10 or greater.
• DSP/BIOS 5.20:

https://www-a.ti.com/downloads/sds_support/targetcontent/bios/bios_5_20/index.html
• C5509A Board Support Package: http://c5000.spectrumdigital.com/evm5509a
• Reference Frameworks v2.2 or greater:

http://dspvillage.ti.com/docs/catalog/software/details.jhtml?templateId=5121&path=template
data/cm/swdetail/data/rframe_source

https://www-a.ti.com/downloads/sds_support/targetcontent/bios/bios_5_20/index.html
http://c5000.spectrumdigital.com/evm5509a
http://dspvillage.ti.com/docs/catalog/software/details.jhtml?templateId=5121&path=templatedata/cm/swdetail/data/rframe_source

 SPRAA19A

 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS 5

2.2 Hardware Requirements

The following software and hardware are needed to run the audio-streaming application:
• TMS320VC5509A EVM PLUS board
• 2-4 multimeters (In theory one is enough. However, with fewer multimeters, you will need to

move them around to perform all power measurements.)
• CD player (or any audio device)
• Speakers
• 1 stereo audio cable

2.3 Hardware Setup

The hardware for running the example application and measuring power usage should be set up
as shown in Figure 2. Only two multimeters are shown; they can be moved when performing
absolute DSP voltage and absolute supply voltage measurements as described in the list that
follows the figure.

Figure 2. Hardware Arrangement for Example Application

• Connect the CD player or audio source to the line-in jack of the EVM 5509A using the audio
cable.

• Connect the line-out jack to a pair of stereo speakers (or some other audio output device).

SPRAA19A

6 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS

• JP2 lies on the power rail of the board’s 5V supply, and JP3 lies on the DSP core’s power
rail. A current shunt is supplied on the board for these jumpers for measurement purposes.
JP2 has a shunt resistor of 0.025 ohm. JP3 has a shunt resistor of 0.1 ohm.

• Connect one multimeter across JP2 and another across JP3 . This allows you to measure
power for both the DSP and the board itself. By measuring the voltage drop across the
shunt resistors, you can deduce the amount of current fed to the DSP and the overall
system.

• To obtain absolute DSP core voltage measurements, connect a third multimeter across one
end of the resistor on JP3 and one of the ground test points (for example, TP1).

• To obtain absolute board supply voltage measurements, connect a fourth multimeter across
one end of the resistor on JP2 and one of the ground test points (for example, TP11).

• The “Wake Up” switch (S4) generates an interrupt to test the sleep mode.

2.4 Building the Application in CCStudio

To build the application using Code Composer Studio, follow these steps:

1. Install the Reference Frameworks at a location to be referred to as RRFF__DDIIRR. Next, unzip the
zip file that accompanies this application note at the same location, on top of the Reference
Frameworks. Select “Yes to all” when prompted to overwrite existing files.

2. Open CCStudio Setup to configure the C5509A EVM board. Point it to use the startup GEL
file sd5509evm.gel supplied in the referenceframeworks\apps\rf5_pwrm\projects\evm5509a
folder. This ensures that the external memory interface is properly initialized. Refer to the
CCStudio documentation if you are unsure about how to do this.

3. Use Code Composer Studio to open the app.pjt file in the
RRFF__DDIIRR\referenceframeworks\apps\rf5_pwrm\projects\evm5509a folder.

4. Ensure the BIOS_INSTALL_DIR environment variable points to your DSP/BIOS 5.20
installation directory. This is used to find the latest PSL libraries.

5. Click the Rebuild All button in CCStudio to rebuild the project.

2.5 Running the Application in CCStudio

Using Code Composer Studio, load the app.out file, which is located in the
RF_DIR\referenceframeworks\apps\rf5_pwrm\projects\evm5509a\Debug folder. Put all DIP
switches on the target board into their default position as per Table 1 in Section 3.1 before
running the application.

When performing power measurements, be sure to select the Debug->Run Free menu
command and then the Debug->Disconnect menu command in CCStudio instead of using
Debug->Run to run the program. The reason for using Debug->Run Free is to ensure minimal
interaction of the board with emulation, thus improving the accuracy of the power
measurements. The Debug->Disconnect command is currently needed as a work-around to
allow the target to disconnect properly for power measurements (SDSsq43297).

 SPRAA19A

 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS 7

When running the application, the DSP/BIOS Real-Time Analysis tools operate in stop mode
without RTDX support. You can rely on tools such as the Message Log, Statistics View and
Kernel Object View for debugging only when you halt the processor. It is highly recommended
that you disable RTDX when using power reduction features on a DSP, since emulation
changes power measurements and could potentially disrupt the process of a DSP going into
low-power (sleep) mode.

As of the publication date of this application note, STS statistics do not work when the frequency
is scaled to a value different from the default of the DSP (SDSsq36471).

3 Application Structure
This section describes various aspects of the structure of the example power management
application.

3.1 Data Path and DIP Switches

The data path is essentially the same as the data path for the RF5 application. An audio frame
from the input codec is split into buffers for the left and right channels. These buffers are sent to
two separate processing channels. The processed data is joined into a single buffer and sent out
to the output codec hardware.

DIP switches (S2) on the target board are used to control the application. The can be used to
activate or deactivate various power saving features.

Table 1. DIP Switches (S2)
DIP Switch Function in Down Position Function in Up Position Default Position
0 Run in G.726 mode Run in passthrough mode Upward
1 Gate off clock domains in DSP/BIOS

idle loop
Leave clock domains on in
DSP/BIOS idle loop

Upward

2 Turn on calibration Turn off calibration Upward
3 Put DSP in deep sleep n/a Upward

DIP switch 0 controls the data path. In passthrough mode, two passthrough channels running
the lightweight VOL (volume) algorithm are used. In G.726 mode, the channels are substituted
with ones that run the G.726 encoder and decoder algorithms. See Figure 3.

DIP switch 1 controls clock domain idling in the DSP/BIOS idle loop. See Section 4.2, "Gating
Off Clock Domains During DSP/BIOS Idle Loop" for details.

DIP switch 2 controls calibration. See Section 4.3, "Voltage and Frequency Scaling" for details.

DIP switch 3 can be used to put the DSP in deep sleep mode. See Section 4.4, "CPU Sleep and
Wake-Up" for details.

SPRAA19A

8 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS

RxSplit
task TxJoin

task

Control
task

Processing Task

Output Audio
codec

DIP switches

select
path

Input Audio
codec

driver

channel

task

G726ENC

G726DEC

VOL

Figure 3. Application Data Path

3.2 Application�s State Machine

The application can also be represented as a state machine. This representation helps you
determine a good strategy for power management (See Reference 6). Different modes of
operation typically have different power requirements, and state transitions are potential times to
modify the power management policy of an application.

For example, when the application enters the G.726 running state, which involves heavy
processing, you would likely need to set the CPU to run at a high frequency and voltage. On the
other hand, when the application enters the sleep state, all peripherals should be shutdown and
all clock domains should be gated off.

In our example application, state transitions are initiated either by external events such as
toggling of DIP switches or external interrupts or by internal events such as the scheduler
entering the DSP/BIOS idle loop. In other applications, such transitions could be triggered with
button presses, the low-battery signal from a battery monitor, the ignition of a car, a user putting
his finger on a fingerprint imaging sensor, software error detection, and many other conditions.

 SPRAA19A

 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS 9

Figure 4. Application State Machine

Figure 4 assumes that all DIP switches are initially in their upward position.

In our discussion of power management techniques in Section 4, you should be able to easily
map the techniques to the operation states to which they apply.

3.3 Module Hierarchy

The module hierarchy is almost identical to that in RF5. Additions include the use of the Power
Manager PWRM module to implement power management techniques, and the use of the board
support library (BSL) to interface with the audio codec. Moreover, the LOAD module is used to
dynamically monitor the CPU load. Note that RTDX has been turned off since instrumentation
through emulation affects power measurements. Furthermore, use of RTDX and emulation can
adversely disrupt the process of putting a DSP into low-power (sleep) mode on some platforms,
hence the importance of turning it off cannot be understated.

DIP switch 3 /
S4 interrupt

State of
TSK_idle

State of
TSK_idle

DIP switch 3 /
S4 interrupt

DIP switch 0

IDLE

SLEEP

INIT

G726
RUNNING

PASSTHROUGH
RUNNING

(down) (up)

DIP switch 3 /
S4 interrupt

SPRAA19A

10 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS

Application Fram ew ork

Threads
tskRxSplit tskProcess tskTxJoin tskControl

DSP/BIOS

SIO, SEM,
QUE, MBX

ATM,
MEM, SYS

LOG,
STS

TSK, CLK,
HW I, IDL

DIO

Cell w rappers CHAN SCOM UTL

ICC XDAIS algs ICELL ALGRF SSCR

LOAD IOM codec-driver IOM McBSP-driver

PSL

BSL CSL

Hardw are

PW RM

Figure 5. Modules Used in Application

3.3.1 LOAD Module

The LOAD module supplies the capability to compute the CPU load at run-time. Figure 7The
following figure illustrates the way it works:

Figure 6. CPU Load Calculation in LOAD Module

Window = 500ms (default)

t0 t1 t0 t1
‘minloop’ (in units of ~ cycles)

‘count’ is # hits of
LOAD_idlefxn in the
window

cpuload = (100 - ((100 * (count * minloop)) / total))

IDL load
100 – IDLload gives
App CPU Load

 SPRAA19A

 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS 11

It relies on an IDL thread to be inserted in an application to calibrate the amount of time needed
to run one iteration of the DSP/BIOS idle loop. It also keeps track of the number of times the idle
loop runs over a time period as specified by the “window” variable in load.c, and estimates the
CPU load by dividing the idled time by the time elapsed and subtracting the result from 1. The
load is multiplied by 100 and reported as a percentage.

3.4 Directory Structure

Figure 7 shows the directory structure after installing the Reference Frameworks and the audio-
streaming application code. It highlights the most important files the directories contain.

Figure 7. Directory Structure

SPRAA19A

12 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS

Folders to notice include:

• apps\rf5_pwrm. The root folder for the audio-streaming application.
– projects. Contains platform-specific files for the application. This includes board-specific

configuration files, project files and linker command files. In particular, appBoard.tci
contains the configuration for the PWRM module. In appSetpoints.h, you can find
information pertaining to particular setpoints available on a specific target board.
appPower.c is used to hold user functions that are needed to perform power
management.

– threads. Contains hardware-independent source files for the threads. The files
thrControl.* contain code for the control task that changes power management policy
based on dip switch input. The files thrProcess.* contain code that performs data
processing during passthrough and G.726 modes.

• include. Contains a number of public header files used by the Reference Frameworks. The
application uses some, but not all, of these header files. Public header files are referenced
by both algorithm and framework code. In contrast, private header files are stored with the
source code that includes them and are not intended for use by other modules. Each library
module has one header file in this folder.

• src. Contains folders with source files for different modules. In particular, it includes files for
the LOAD module and the PWRM-based codec and McBSP drivers. Note that in order to
rebuild the drivers, you must change the headers’ include path in the Compiler tab of the
Project→Build Options dialog by following a procedure similar to the one described in
Section 2.4 to change the DSP/BIOS include path to point to your DSP/BIOS install location
(default C:\bios_5_20).

4 Power Management Techniques
The example application showcases several power management techniques you can leverage
in a DSP/BIOS-enabled application. As with most software techniques, no one size fits all. You
should decide which techniques make sense for your application design. To get an idea of the
amount of power savings you can typically achieve, see “Appendix A: Power Measurements” for
a set of power measurements performed on the provided application in various power-saving
configurations.

4.1 Boot-Time Power Reduction Function

The DSP/BIOS PWRM module allows you to configure a hook function that can idle clock
domains or resources that are not used before the main() function is run. Typically this can be
used to control power management in the initialization state of an application, for example when
a consumer switches on a cell-phone or a digital camera. It can also be used to idle clock
domains or resources that are not used throughout the application.

In our example, the function is configured for DSP/BIOS in appBoard.tci:

tibios.PWRM.BOOTHOOKFXN = prog.extern("bootPowerReduction");

 SPRAA19A

 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS 13

The bootPowerReduction function turns off the DSP CLKOUT signal, which is on by default but
is never used by the application. Because the C5509a DSP is divided into multiple clock
domains, a program can cause the DSP’s clock signal to be fed only to domains (sections) of
the chip that are used.

/*
 * ======== bootPowerReduction ========
 * This function is called at initialization time to reduce power
 * consumption by the DSP.
 */
Void bootPowerReduction()
{
 Uns idleStatus;
 PWRM_Status status;
 TIMER_Handle hTimer;
 Int i;

 // Call chip support library to turn OFF the DSP's CLKOUT signal
 CHIP_FSET(ST3_55, CLKOFF, 1);

 // Turn off timer 1 whenever Peripherals domain is idle
 hTimer = TIMER_open(TIMER_DEV1, TIMER_OPEN_RESET);
 TIMER_FSETH(hTimer, TCR, IDLEEN, 1);

 // Turn off LEDs
 EVM5509_LED_init();
 for (i = 0; i < NUM_LEDS; i++) {
 EVM5509_LED_off(i);
 }

 // Turn off other resources not needed...
}

4.2 Gating Off Clock Domains During DSP/BIOS Idle Loop

DIP switch 1 can be used to gate off the CPU domain while the application runs in the
DSP/BIOS idle loop (IDLE state). Gating off clock domains in the idle loop can be thought of as
"free" power savings, since interrupt-based applications typically spin in the idle loop while
waiting for data or control signals. During this idle time, it is efficient to gate off the CPU clock
domain since it is not doing any useful work (otherwise the idle loop would not be running).

The availability of this power-saving mechanism is one more reason to use an interrupt-based
software design to maximize the amount of time spent in the idle loop.

 case DIP_IDLING:
 if (newDIP == 0) {
 /*
 * Gate off clock domains during idle loop.
 * Note that this idle mask is independent of
 * the one used outside the idle loop.
 */
 attrs.idleMask = PWRM_IDLECPU;
 }
 status = PWRM_configure(attrs);
 UTL_assert (status == PWRM_SOK);
 break;

SPRAA19A

14 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS

4.3 Voltage and Frequency Scaling

Voltage and frequency scaling (VFS) is another approach to saving power. When an application
does not need the full amount of processing power to meet real-time deadlines, we can slow
down the CPU by backing off its frequency. At lower frequencies, a lower voltage can be used.
Because active power consumption by the CPU is proportional to the clock frequency and to the
square of the voltage, as described in Section 1.1, this technique can potentially result in great
power savings.

However, a task performed by a CPU running at a lower frequency takes longer to perform. This
means potentially less time spent in the IDLE and SLEEP modes. So how does this VFS
strategy compare with the strategy of running everything at highest speed, and then putting the
DSP in a low power state (for example, by gating off clock domains)? If the idle/sleep mode is
ideal and there is no active power drawn during that time, both strategies should result in similar
power consumption. However, in practice, there could be active power consumption during
sleep/idle due to device limitations or to power-off latencies being too expensive. Hence, by
choosing a good voltage and frequency setpoint while an application is in its RUNNING states,
you can reduce overall energy consumption, as illustrated in Figure 8:

IdleIdle

Lower active power
consumption

overall

Active Power
consumption

Active Power
consumption

timetime

CPU Running
at 200 MHz

CPU Running
at 100 MHz

Acive power
consumption during

idle/sleep

R
unning

Running

Figure 8. Active Power Consumption Comparison with VFS Using Fixed Voltage

4.3.1 Static Scaling

An easy way to leverage VFS is to determine the best voltage and frequency setpoint to use at
design-time and hard-code it statically into the application. Our audio-streaming application has
an array in thrControl.c to specify the actual setpoints to be used for each RUNNING state in the
system:

#define MAXSETPOINT 15 /* max. setpoint supported on this board */

// Modify this array to suit the application
Int staticSetpoints[NUMPROCESSINGMODES] = {
 MAXSETPOINT, // for PASSTHROUGH_MODE
 MAXSETPOINT // for G726_MODE
};

 SPRAA19A

 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS 15

But how can you determine the correct setpoint for each RUNNING state (or processing mode)?
One answer is to compute the CPU load theoretically based on the algorithms being run and find
a frequency setpoint that should meet the real-time requirements. The other approach is to
obtain this setpoint experimentally.

In the example application, putting DIP switch 2 in the "down" position places the application in
calibration mode. This mode is not shown in Figure 4 because it is intended only for use in code
development; it would not appear in an actual deployed system. Calibration mode causes the
tskControl task to check the CPU load periodically and to adjust the VF setpoint downward until
the CPU load reaches a target you specify, for example 70%. After that, whenever the CPU load
exceeds this value, the frequency is increased by one step. If an application is left running this
calibration for a specific processing mode during a long enough period, you can check the
staticSetpoints array to find the minimum setpoint appropriate for that processing mode.

Remember that the calibration only estimates the frequency needed to meet real-time deadlines.
It does not guarantee meeting real-time requirements, just as running the CPU at full speed at
all times does not give that guarantee. If CPU activity occurs in bursts with durations smaller
than the CPU load polling period, these bursts will be averaged out over time, and real-time
misses could be undetected even with a conservative target CPU load. Similarly, a CPU load of
100% does not necessarily mean real-time was missed. For example, the polling period may be
shorter than the processing time of a given frame of data. In a data streaming application, you
should calibrate with multiple polling periods that are at least as long as the data frame rate but
short enough so that bursts of CPU activity leading to real-time misses are not averaged out.

Another limitation of this calibration method is that it does not work when the CPU clock is gated
off in the DSP/BIOS idle loop. That is, DIP switches 1 and 2 cannot be simultaneously in the
"down" position. This is because the LOAD module counts the number of times the idle loop
runs to compute the CPU load, but with the CPU "stuck" in the idle loop while the CPU clock is
gated off, the idle loop is not run as often and the CPU load computation is inaccurate.
Nevertheless, after calibrating, you can re-enable the feature that gates off the CPU clock in the
idle loop.

4.3.2 Dynamic Scaling

VFS can also be performed adaptively by increasing or decreasing the frequency and voltage of
the CPU periodically based on CPU load predictions in an attempt to achieve a target CPU load.
However, this is much more difficult to do because it requires that you characterize how the CPU
load of an algorithm changes over time. If the VF setpoint is not adjusted rapidly and accurately
enough, the application might miss real-time requirements during extreme CPU load variations.

For example, in a voice-coding algorithm such as G.723, there is a component for voice-activity
detection. Whenever no voice activity is detected, the algorithm uses a minimal amount of
processing power and the CPU load becomes very low. A dynamic VFS strategy might scale the
voltage and frequency to low values during this time. When voice is detected in the incoming
data, the CPU load jumps suddenly and the scaling strategy, unless it is well designed, will miss
real-time requirements.

SPRAA19A

16 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS

You can experiment with dynamic VFS using the audio-streaming application. By setting an
entry to USE_DVFS in the staticSetpoints array, you tell the application to perform dynamic VFS
periodically for a particular RUNNING state/processing mode. In this simple scheme, the
prediction algorithm uses the CPU load measured in the previous period to predict the load of
the next period, and adjusts the setpoint accordingly.

Using such dynamic VFS for passthrough mode would work fine, since the load rarely changes.
However, the power savings, if any, is small compared to static VFS. In fact, it is possible that
scaling dynamically performs worse than the static case, as the predictive scheme might cause
the setpoint to fluctuate to a value higher than the optimal one.

On the other hand, with its faster changes in CPU requirements, G.726 mode might potentially
miss real-time deadlines with dynamic VFS, since the example adjusts the setpoint by single
steps (although we did not experience missed deadlines during our testing). Because the
smallest relative frequency adjustment on the EVM 5509A occurs during the transition from 192
MHz to 180 MHz, this scheme is valid only for cases where the CPU load changes by no more
than 6.25% in a period of six seconds (twice the polling period) within a given processing mode.

if (staticSetpoints[thrControl.mode] == USE_DVFS) {
 /*
 * Do DVFS. Scale only if cpu load is outside range of
 * TARGET_CPU_LOAD +- LOAD_MARGIN
 */
 if (systemCpuLoad <= TARGET_CPU_LOAD - LOAD_MARGIN){
 // Decrement frequency and/or voltage
 if (setpoint > minSetpoints[thrControl.mode]) {
 setpoint--;
 status = PWRM_changeSetpoint(setpoint, NOTIF_TIMEOUT);
 UTL_assert(status == PWRM_SOK);
 UTL_logDebug1("New setpoint is %d", setpoint);
 }
 }
 else if (systemCpuLoad > TARGET_CPU_LOAD + LOAD_MARGIN) {
 // Increment frequency and/or voltage
 if (setpoint < MAXSETPOINT) {
 setpoint++;
 status = PWRM_changeSetpoint(setpoint, NOTIF_TIMEOUT);
 UTL_assert(status == PWRM_SOK);
 UTL_logDebug1("New setpoint is %d", setpoint);
 }
 }
}

In brief, dynamic VFS is of limited use without intimate knowledge of CPU load usage. The
ability to predict CPU load correctly is essential. Power-users might want to explore this
methodology further to obtain additional power savings, but in general it is a sufficient strategy to
design an application using static VFS.

 SPRAA19A

 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS 17

Currently, dynamic VFS does not work in the supplied application when the CPU clock is gated
off in the DSP/BIOS idle loop. That is, DIP switches 1 and 2 cannot be simultaneously in the
"down" position. This is because the LOAD module counts the number of times the idle loop
runs to compute the CPU load, but with the CPU "stuck" in the idle loop while the CPU clock is
gated off, the idle loop is not run as often and the CPU load computation is inaccurate. The
impact of this limitation is minimized when using dynamic VFS, since with a good CPU load
prediction algorithm, the amount of time spent in the idle loop should decrease at reduced CPU
frequencies. Hence, reduction in the time spent in the idle loop lessens the power-savings
contribution by the IDLE state.

4.3.3 Latency Issues in Voltage and Frequency Scaling

One drawback of voltage and frequency scaling is that there is latency involved when changing
the voltage and frequency. Figure 9 shows the latencies on the 5509a EVM as an example:

Figure 9. Latencies When Using VF Scaling

The latency varies widely across platforms. An application might run fine on one platform with
certain VF setpoints, but may not run properly (for example, may miss deadlines) on a revision
of the platform due to circuit component changes that alter the voltage scaling latencies.
Consequently, CPU load estimation and/or calibration needs to be redone when the hardware
design changes.

The feasibility of dynamic VFS is highly dependent on latencies, even more so than the static
case, since voltage and frequency transitions would occur much more frequently.

SPRAA19A

18 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS

4.4 CPU Sleep and Wake-Up

Placing DIP switch 3 in the "down" position causes the application to go into deep sleep (SLEEP
state). The concept of deep sleep varies for different projects, but in general, it is thought of as
the state in which an application does minimal to no work at all and the CPU and most of its
peripherals can be put into a low-power mode. The SLEEP state differs from the IDLE state in
the sense that it powers things down more extensively, resulting in a higher latency during wake-
up time (See Appendix B for sleep mode latencies). For instance, it is the state of a cell-phone
that has not been used for an extended period, or a car’s MP3 player that’s waiting for a
passenger to open the door to start playing.

In the example application, the codec and the serial port data streaming drivers have been
modified to register with the PWRM power manager for notification of sleep and awakening
events. Figure 10 summarizes what the PWRM power manager and the drivers’ notify functions
do when these event occur.

Figure 10. Sleep and Wake-Up Action Sequence

These actions are performed in the order shown so that the McBSP serial port does not shuttle
data to or from a powered-down codec.

PWRM power
manager

5509a DMA AIC23 C55xx DMA McBSP
data streaming driver

! Power down
the codec
peripheral.

! Reset the
McBSP used
to move data
to and from
the codec
peripheral.

! Gate off all
clock domains
that are still
active.

! Re-configure
the codec
peripheral.

! Re-configure
McBSP for
data
streaming.

! Re-activate
clock domains
that have
been turned
off on sleep
event.

On
Awake
event

On Sleep
event

codec driver

 SPRAA19A

 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS 19

An interrupt is needed in order to pull the application out of deep sleep. Because we have gated
off all clock domains to maximize power savings, this interrupt has to be initiated externally. For
this application, we are using “Wake Up” Switch (S4). Before going to sleep, the task that
initiates the sleep event should try to back off the voltage of the CPU as much as possible while
maximizing frequency. This allows the CPU to use the minimum voltage during sleep—hence
reducing static power consumption as per Section 1.1—while executing the sleep and wake-up
code at the highest possible speed. We also need to turn off the scheduler during this going-to-
sleep and wake-up process so that we do not get preempted after voltage and frequency have
been scaled down.

#define MAXFREQ_MINVOLT_SETPOINT 8

case DIP_SLEEP:
 if (newDIP == 0) {
 /*
 * Turn off scheduler so that we do not get preempted,
 * which results in subsequent processing to be done
 * at a frequency that is too low.
 */
 SWI_disable();
 // Go to sleep after backing off voltage
 status = PWRM_changeSetpoint(MAXFREQ_MINVOLT_SETPOINT,
 NOTIF_TIMEOUT);
 UTL_assert(status == PWRM_SOK);
 status = PWRM_sleepDSP(PWRM_DEEPSLEEP, 0,
 NOTIF_TIMEOUT);
 UTL_assert(status == PWRM_SOK);
 status = PWRM_changeSetpoint(
 staticSetpoints[thrControl.mode], NOTIF_TIMEOUT);
 UTL_assert(status == PWRM_SOK);
 SWI_enable();
 UTL_logDebug("I am awake");
 }
 break;

5 System-Level Considerations and Other General Techniques
There are other considerations in power management beyond using the PWRM module to
obtain power savings. Since the DSP is never the only power consumer in a real-world system,
it is important to expand our scope to see what other savings we can obtain from a DSP
software perspective.

5.1 Use Memory Closest to the CPU

In a hierarchical memory model, one way to save power is to place code and data in the
memory closest to the CPU. Typically, by using internal memory, cache, instruction buffers, and
the like, you can produce an application that consumes less power. External memory access
should be avoided not just to improve performance, but also to save power. For example, in the
audio-streaming application, all code and data are in internal memory (DARAM and SARAM
memory sections in the DSP/BIOS configuration), including what is conceptually the external
memory heap. As a result, XDAIS algorithms that request external memory for data buffers are
actually given internal memory. Moreover, you might want to use memory overlays if possible to
reduce the need for external memory usage.

SPRAA19A

20 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS

5.2 Optimize Code Size and Performance

Another tip is to optimize your application’s code size and performance. A smaller application
typically has less need to put code in external memory. Optimizing for performance also reduces
power consumption if it results in fewer non-idle instructions being run over time. However, if
performance improvements are achieved via parallelism through the use of more functional units
on a DSP, power consumption may actually increase if more resources must to be powered up
for the processing to be performed.

5.3 Know Your Peripherals

Modern DSP processors often control a number of on-chip and on-board peripherals. It is
important to find out if low-power modes exist for these peripherals. Sometimes it is enough just
to know that they exist and can be turned off! For example, we turned off the DSP CLKOUT
signal via the boot hook function in Section 4.1. The knowledge that this signal exists and is not
being used to drive any external peripheral allowed us to turn it off and obtain power savings.
Here are examples of additional things you might do to reduce peripheral power consumption:

• Make sure the idle enable bits in control registers for unused peripherals, such as timers
and McBSPs, are on to allow them to go idle during IDLE and/or SLEEP states.

• Micro-manage the on/off status of the backlight for an LCD display.

• Use an external clock if one is available to drive serial ports instead of the DSP clock. This
allows you to have the DSP gate off the PERIPHS and CLKGEN domains.

• Turn off unnecessary power consumers during boot-up time.

• Use self-refresh modes for dynamic memories and displays where the device will manage
the refresh operation on its own.

6 Portability
The RF5-based application supplied is designed to be easily portable to platforms other than the
5509A EVM that are/will be supported by the PWRM module. Porting involves performing the
following modifications:

1. Replace drivers with the ones for your target platform. This includes modifying the drivers to
register notification functions with the PWRM module for sleep and wakeup events.

2. Update appSetpoints.h to use valid setpoints for your target platform. This includes
modifying the value of constants such as MAXFREQ_MINVOLT_SETPOINT and
MAXSETPOINT.

3. Update the bootPowerReduction function if necessary, since some of the peripherals such
as Timer 1 and CLKOUT signal might not be applicable on your target platform.

4. Obtain libraries targeted for your DSP architecture. For example, the supplied G.726
algorithms work only on the C55x DSPs. Hence, you will need to use a different version if
you use a different family of DSPs. This includes having the correct version of PSL that
works with your target device.

5. Update the DSP/BIOS configuration to match the configuration of this new platform.

 SPRAA19A

 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS 21

7 Power Management Quick Reference
Table 2 lists some questions you should ask when designing the power management of your
application.

Table 2. Questions for Power Management Design
Question If the Answer is Yes:

Does your application have a user-induced stand-by
mode in which the DSP is not required to perform
work and simply waits for an interrupt event?

Use PWRM to lower the voltage and gate off clock domains
during deep sleep. Shut down all unused peripherals during
this mode.

Does your DSP code occasionally go idle while your
application is active? Are there unused cycles
during data processing? Do you want a quick way to
automatically save power during this idle time?

Use PWRM to gate off unused clock domains during the idle
mode.

Are there unused domains or peripherals during
boot-up time?

Gate or power them off using the boot hook function in the
PWRM module specified under DSP/BIOS configuration.

Does your DSP code ever go idle while your
application is running? Do you need to maximize
the amount of power you save during this idle time?

Consider using the PWRM module to lower the frequency
and voltage of the CPU. You will need to determine the
minimum frequency at which you can run each processing
mode in the application without missing real-time.

Are power-savings on the DSP itself not enough to
meet power requirements?

Look elsewhere in the system. Put code in memory closest
to the CPU. Optimize your code for both performance and
footprint. Investigate peripherals and clock signals that can
be shut down or put into power-saving modes. You may
want to leverage PWRM’s registration/notification
mechanism to automatically notify drivers of power events
(e.g. deep sleep), so they can manage the power
consumption of the peripherals they drive.

Have you tried everything and yet still need to save
more power?

Characterize the amount of power needed by your
application over time. Use this characterization to predict
your CPU load over time. Dynamically lower the frequency
as much as possible whenever the application does not use
the CPU fully.

For power consumption by the DSP and its on-chip peripherals, Texas Instruments has provided
Microsoft Excel spreadsheets for most DSPs to allow users to estimate the theoretical power
consumption for their DSP, based on %CPU utilization, peripheral idle status, temperature, CPU
frequency, and other variables. For example, see Reference 7 for the spreadsheet of the
C5509A.

8 Conclusion
In this application note we discussed the use of OS abstractions in DSP/BIOS to implement
different power management policies. The PWRM module provides facilities that specify power
management policies in various operation states, as demonstrated in the audio-streaming
application provided.

Start by identifying the operation states in your application. Then choose methodologies to use
with your application depending on the semantics of the possible states and the underlying
hardware.

SPRAA19A

22 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS

It is important to realize that there is no one strategy that works for every application. When
producing DSP software, keep system-level considerations in mind to lower the power
consumption for your complete design. Think about power early. This does not necessarily
mean you need to turn on power management in your initial software development. In fact, it is
suggested that you add power management after the code works. Early on, you should
investigate how you can save power, identify the states in your application, experiment with
hardware, and put in the hooks needed to ease the change in power management policies
during state transitions. Then enjoy the power savings.

9 References
1. "Power-Optimizing Embedded Applications", Proceedings of the Embedded Systems Conference,

Scott Gary, March 2004.

2. TMS320C5000 DSP/BIOS Application Programming Interface (API) Reference Guide, SPRA404J,
Texas Instruments.

3. TMS320 DSP/BIOS User’s Guide, SPRU423F, Texas Instruments.

4. Using the Power Scaling Library, SPRA848A, Texas Instruments

5. Reference Frameworks for eXpressDSP Software: RF5, An Extensive, High-Density System,
SPRA795A, Texas Instruments.

6. System-Level Power Optimization: Techniques and Tools, ISLPED99, Luca Benini, Giovanni
DeMicheli, 1999.

7. TMS320VC5509A Power Consumption Summary, SPRAA04A

 SPRAA19A

 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS 23

Appendix A: Power Measurements
Power measurements were performed with the application using the setup described in Section
2.3. All numbers in this appendix were obtained under the following conditions:

• Platform: EVM 5509A PLUS Rev A
• Sampling rate: 8 kHz
• Samples per frame: 80
• Debug flags: -g
• Optimization: none in the application (-o2 in algorithms)
• DSP/BIOS: Version 5.20
• RTDX: Off
• Emulator: Specrum Digital XDS510PP+ connected
• Run mode: Run Free and Disconnect in CCS 3.1
• Built-in shunt resistors: DSP core (JP3) 0.1 ohm, supply (JP2) 0.025 ohm
• CPU load at 192 MHz: 3% for passthrough, 50% for G.726
• Multimeters: Two FLUKE 187 True RMS Multimeters for voltage drops across

shunt resistors and for absolute DSP and supply voltages

Table 3. Power Measurements in Passthrough Mode
 Setup Supply

current
(mA)

Supply
voltage

(V)

Board
power
(mW)

DSP
Core

current
(mA)

DSP
Core

voltage
(V)

DSP
Core

power
(mW)

DSP Power
Reduction
Relative to
Case 1 (%)

Total Power
Reduction
Relative to
Case 1 (%)

1 CPU @ 192 MHz,
passthrough mode,
all code off-chip,
Boot power reduction fxn:
off, idle loop: domains
active

399.8

5.11 2043 123.8 1.646 203.8

0 0

2 CPU @ 192 MHz,
passthrough mode,
all code on-chip,
Boot power reduction fxn:
off, idle loop: domains
active

348.1

5.11

1779

123.1

1.646

202.6

0.57

12.9

3 CPU @ 192 MHz,
passthrough mode,
all code on-chip,
Boot power reduction
fxn: on,
idle loop: domains active

330.4

5.12

1692

121.9

1.647

200.8

1.47

17.2

SPRAA19A

24 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS

 Setup Supply

current
(mA)

Supply
voltage

(V)

Board
power
(mW)

DSP
Core

current
(mA)

DSP
Core

voltage
(V)

DSP
Core

power
(mW)

DSP Power
Reduction
Relative to
Case 1 (%)

Total Power
Reduction
Relative to
Case 1 (%)

4 CPU @ 192 MHz,
passthrough mode,
all code on-chip,
Boot power reduction fxn:
on,
idle loop: domains idled

314.0 5.12

1608

65.21

1.652

107.7

47.1

21.3

5 CPU @ 12 MHz,
passthrough mode,
all code on-chip,
Boot power reduction fxn:
on,
idle loop: domains active

281.6

5.15

1450

6.58

1.247

8.21

96.0

29.0

6 CPU @ 12 MHz,
passthrough mode,
all code on-chip,
Boot power reduction fxn:
on,
idle loop: domains idled

281.7

5.04

1420

4.85

1.247

6.05

97.0

30.5

7 Using dynamic VFS,
passthrough mode,
all code on-chip,
Boot power reduction fxn:
on,
idle loop: domains active

278.9

5.05

1408

6.51

1.247

8.12

96.0

31.1

Observations:

• About 13% board power reduction was observed simply by moving the .text code section
from external to internal memory.

• Idling clock domains in the DSP/BIOS idle loop resulted in an extra 45% improvement in
DSP power reduction in the passthrough mode.

• Setpoints used for frequency and voltage scaling in cases 5 and 6 were optimized by using
the calibration methodology described in Section 4.3.1.

• Static frequency and voltage scaling combined with idling in the DSP/BIOS idle loop gives
best power savings during run time (shown in bold in Table 3)

• Dynamic voltage and frequency scaling did not produce significant power savings over the
static case in passthrough mode, since the CPU load varies little. Ultimately the application
runs at the same setpoint as in the static case.

 SPRAA19A

 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS 25

Table 4. Power Measurements in G.726 Mode
 Setup Supply

current
(mA)

Supply
voltage

(V)

Board
power
(mW)

DSP
Core

current
(mA)

DSP
Core

voltage
(V)

DSP
Core

power
(mW)

DSP Power
Reduction
Relative to
Case 1 (%)

Total Power
Reduction
Relative to
Case 1 (%)

1* CPU @ 192 MHz,
G.726 mode,
all code off-chip,
Boot power reduction
fxn: off, idle loop:
domains active

431.7 5.14 2219

126.3 1.645

207.8

0 0

2 CPU @ 192 MHz,
G.726 mode,
all code on-chip,
Boot power reduction
fxn: off, idle loop:
domains active

349.4

5.12

1789

123.5

1.645

203.2

2.22

19.4

3 CPU @ 192 MHz,
G.726 mode,
all code on-chip,
Boot power reduction
fxn: on,
idle loop: domains active

332.2

5.10

1694

122.1

1.647

201.1

3.21

23.6

4 CPU @ 192 MHz,
G.726 mode,
all code on-chip,
Boot power reduction
fxn: on,
idle loop: domains
idled

325.4 5.11

1663

94.1

1.649

155.2 25.3

25.1

5 CPU @ 144 MHz,
G.726 mode,
all code on-chip,
Boot power reduction
fxn: on,
idle loop: domains
active

314.1

5.13 1611

79.8

1.452 115.9

44.2

27.4

6 CPU @ 144 MHz,
G.726 mode,
all code on-chip,
Boot power reduction
fxn: on,
idle loop: domains
idled

312.2

5.14

1605

68.5 1.452 99.5

52.1

27.7

7 Using dynamic VFS,
all code on-chip,
Boot power reduction
fxn: on,
idle loop: domains active

312.7

5.12

1601

80.1 1.452

116.3

44.0

27.9

*Code missed real-time

Observations:

• Power reduction is more modest than in the passthrough case, since the CPU load is
higher.

• More than 19% power reduction was observed simply by moving the .text code section from
external to internal memory.

SPRAA19A

26 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS

• Idling clock domains in the DSP/BIOS idle loop still resulted in an extra 22% improvement in
DSP power reduction in G.726 mode, even though the CPU load is much higher than in the
passthrough case.

• Setpoints used for frequency and voltage scaling in cases 5 and 6 were optimized by using
the calibration methodology described in Section 4.3.1.

• Static frequency scaling combined with idling in the DSP/BIOS idle loop again gives the
best power savings during run time

• Dynamic voltage and frequency scaling did not produce significant power savings over the
static case in passthrough mode, since the CPU load varies little. Ultimately the application
runs at the same setpoint as in the static case.

Table 5. Comparison Between Idle and Sleep Modes
 Setup Supply

current
(mA)

Supply
voltage
(V)

Board
power
(mW)

DSP
Core
current
(mA)

DSP
Core
voltage
(V)

DSP
Core
power
(mW)

DSP Power
Reduction
Relative to
Case 1 in
passthrough
mode (%)

Total Power
Reduction
Relative to
Case 1 in
passthrough
mode (%)

1 No processing,
all code on-chip,
Boot power reduction fxn:
on
idle loop: CPU domain
idled

310.28

5.13

1592 56.3

1.651 92.95 54.4 22.1

2 Sleep mode,
codec powered down,
with voltage reduction
during sleep,
all code on-chip,
Boot power reduction fxn:
on

266.12

5.08 1352 0.29 1.244 0.361 99.8 33.8

Observations:

• Sleep mode produces the highest power savings since there is no audio and the system is
not doing any useful work. By operating at the lowest voltage available, resetting the
McBSP, powering down the codec, and gating off all clock domains, we were able to
dramatically reduce the DSP power consumption to 0.361 mW and the board power
consumption by more than 33% when compared with case 1 in Table 3.

• When compared with case 1, in which we simply run no processing in which the main
function is empty and the application tasks are suspend leaving the code to spin in the idle
loop with CPU and CACHE domains idled, sleep mode saves about 11% more in board
power consumption and more than 45% in DSP power consumption, at the cost of high
going-to-sleep and awakening latencies (see Appendix B).

 SPRAA19A

 Power Management in an RF5 Audio Streaming Application Using DSP/BIOS 27

Appendix B: Sleep Mode Latencies
Sleep mode latencies were measured using the Profiler Clock in Code Composer Studio and
tabulated in Table 6. CPU frequency is fixed at 192 MHz. Interrupts are disabled while running
the notification functions.

Table 6. Sleep Mode Latencies in Number of Clock Cycles

 On Sleep Event On Awake Event

McBSP data streaming driver notification function 1983 cycles 1245 cycles

Codec driver notification function 24880 cycles 34142 cycles

Overall latency 26967 cycles 35493 cycles

Observations:

• It takes longer to wake up the DSP than for it to go to sleep. Much of the latency comes
from re-configuring the hardware audio codec upon wakeup.

• Latency can be reduced by selectively doing less. For example, if we leave the codec
powered up during sleep mode, the latency of the codec driver notification function on the
awake event can be improved drastically. This is a tradeoff between power consumption
and latency.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2005, Texas Instruments Incorporated

	Power Management in an RF5 Audio Streaming Application Using DSP/BIOS
	The Need for DSP Power Management
	Common Terms and Principles

	Running the Example Application
	Software Requirements
	Hardware Requirements
	Hardware Setup
	Building the Application in CCStudio
	Running the Application in CCStudio

	Application Structure
	Data Path and DIP Switches
	Application’s State Machine
	Module Hierarchy
	LOAD Module

	Directory Structure

	Power Management Techniques
	Boot-Time Power Reduction Function
	Gating Off Clock Domains During DSP/BIOS Idle Loop
	Voltage and Frequency Scaling
	Static Scaling
	Dynamic Scaling
	Latency Issues in Voltage and Frequency Scaling

	CPU Sleep and Wake-Up

	System-Level Considerations and Other General Techniques
	Use Memory Closest to the CPU
	Optimize Code Size and Performance
	Know Your Peripherals

	Portability
	Power Management Quick Reference
	Conclusion
	References
	Appendix A: Power Measurements
	Appendix B: Sleep Mode Latencies

