
Application Report
SPRAAD3A–December 2006

RapidIO MQT
Todd Mullanix.. DSP Software Development System

ABSTRACT

The RapidIO® Message Queue Transport (MQT) allows applications to communicate to
other TI DSP processors via serial RapidIO. The RapidIO MQT plugs into the MSGQ
module of DSP/BIOS. The RapidIO MQT module uses the messaging logical layer of
RapidIO to send MSGQ messages between processors. The MSGQ module manages
the communication with the MQTs, off-loading that burden from the application. The
application writer must simply configure the RapidIO MQT as described in the
document.

The RapidIO MQT does not manage other parts of the RapidIO peripheral (e.g., Direct
I/O or Congestion Control), but does not preclude the application from using them.

Contents
Trademarks.. 2

1 Contents of Deliverable .. 2
2 Requirements ... 2
3 Installation ... 2
4 Building .. 2
5 MQT Usage Overview ... 2
6 Direct I/O... 3
7 MSGQ Configuration ... 3
8 Buffer Descriptors .. 5
9 MQT Instance Parameters .. 7
10 RapidIO MSGQ System Configuration .. 9
11 Configuration Questions.. 13
12 Interrupt and Peripheral Initialization ... 15
13 RAPIDIOMQT_setCopyFxn API (Advanced Topic) .. 15
14 Required Statically Configured Objects .. 16
15 Example Overview .. 18
16 Debug Capabilities .. 18
17 Modifying Source.. 19
18 Cache... 19
19 Errors ... 20
20 Performance ... 21
21 Footprint .. 22
22 Endianness .. 22
23 Features not Enabled... 22

List of Figures

1 Processors Using RapidIO .. 4
2 CPPI Buffer Descriptor... 5

List of Tables

1 RapidIO MQT Instance .. 4

SPRAAD3A–December 2006 RapidIO MQT 1
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD3A

www.ti.com

Trademarks

1 Contents of Deliverable

2 Requirements

3 Installation

4 Building

5 MQT Usage Overview

Contents of Deliverable

2 CPPI Buffer Descriptor... 6
3 MQT Instance Parameters .. 7

RapidIO is a registered trademark of RapidIO Trade Association.

The following are included in the RapidIO MQT installation
• RapidIO MQT application report (this document)
• RapidIO MQT source code, library and a project file to rebuild it.
• Sample application (source and project file) that uses the RapidIO MQT

The following are needed to build the MQT and example:
• DSP/BIOS 5.21 or higher installed.
• Chip Support Library (CSL) for desired chip.
• Codegen 6.0.1B2 or higher.
• Code Composer Studio (CCS) 3.2 beta 2 or higher.

Before reading the rest of this document, the reader should have an understanding of the MSGQ APIs and
configuration. Refer to the TMS320 DSP/BIOS User's Guide (SPRU423) and/or TMS320C6000 DSP/BIOS
Application Programming Interface (API) Reference Guide (SPRU403) from DSP/BIOS 5.21 or higher.

Untar the package into a directory (e.g., c:\). You must set up two environment variables:
• CSL_INSTALL_DIR: Location of the CSL package (e.g., c:\csl_3_00_10_1)
• DDK_INSTALL_DIR: Location of the installed RapidIO MQT. (e.g., c:\rapidiomqt_<chip>).

The following are the directories that are installed in DDK_INSTALL_DIR\packages\ti\bios\drivers.

Directory Description

rapidiomqt Source code for RapidIO MQT.

rapidiomqt\<chip> Project file, chip-specific items and library

examples\rapidiomqt Source code for RapidIO MQT example.

examples\rapidiomqt\<board> Project file, board specific items and binary.

Both the RapidIOMQT library and example application can be rebuilt via CCS with the supplied project
files.

The RAPIDIOMQT and MSGQ relies on the application to provide a few globally defined variables. They
include:

• MSGQ_config (section MSGQ Configuration)
• RAPIDIOMQT_config (section RapidIO MSGQ System Configuration)
• RAPIDIOMQT instance parameters (section MQT Instance Parameters)

2 RapidIO MQT SPRAAD3A–December 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD3A

www.ti.com

6 Direct I/O

7 MSGQ Configuration

7.1 MSGQ_Config

7.2 MQT Instance

Direct I/O

The application is also responsible for taking the RapidIO peripheral out of power-save and all the
non-messaging configuration portions of the peripheral (refer to the srio_init() function in the example).

The RAPIDIOMQT does not interact with the Direct I/O portion of RapidIO nor does it preclude its usage.
An application can use both Direct I/O directly and the RAPIDIOMQT. The Functional Layer of CSL
provides management of Direct I/O.

MSGQ requires the application to supply a global variable called MSGQ_config of type MSGQ_Config.
Refer to the TMS320 DSP/BIOS User's Guide (SPRU423) and TMS320C6000 DSP/BIOS 5.21 Application
Programming Interface (API) Ref Guide (SPRU403) for additional details. These documents are included
with DSP/BIOS 5.21 or higher.

The following is the MSGQ_Config structure.
typedef struct MSGQ_Config {

MSGQ_Obj *msgqQueues; /* Array of message queue handles */
MSGQ_TransportObj *transports; /* Array of transports */
Uint16 numMsgqQueues; /* Number of message queue handles*/
Uint16 numProcessors; /* Number of processors */
Uint16 startUninitialized;/* First msgq to init */
MSGQ_Queue errorQueue; /* Receives async transport errors*/
Uint16 errorPoolId; /* Alloc error msgs from poolId */

} MSGQ_Config;

The transports array holds all MQT instances. To add a RapidIO MQT instance into an application, the
user must add an entry into the transports array. More details in the following sections.

There is a 1-1 mapping of MQT instances per other processors in the system. A MQT instance
communicates with one remote processor. A MQT instance must have a matching MQT instance on the
remote processor. The order of the MQT instance is dictated by the DSP/BIOS processor Id of the remote
processor that it communicates with. This order is reflected in the transports array in the MSGQ_Config
structure.

Note: MSGQ allows sending a message to another thread on the same processor. Messaging
on the same processor is handled via the MSGQ APIs and does not need a MQT.

If there is no physical connection between two processors, there must be a nop MQT
(MSGQ_NOTRANSPORT) to that processor.

For example, assume a system has 3 processors that communicate to each other via RapidIO.

SPRAAD3A–December 2006 RapidIO MQT 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD3A

www.ti.com

MSGQ_NOTRANSPORT

MQT Instance to procId 1

MQT Instance to procId 2

Transports Array in
MSGQ_config

Processor 0

MQT Instance to procId 0

MSGQ_NOTRANSPORT

MQT Instance to procId 2

Transports Array in
MSGQ_config

Processor 1

MQT Instance to procId 0

MQT Instance to procId 1

MSGQ_NOTRANSPORT

Transports Array in
MSGQ_config

Processor 2

7.3 MSGQ_TransportObj

MSGQ Configuration

Figure 1. Processors Using RapidIO

The following is the MSGQ_TransportObj structure. When adding a MQT, all fields of this structure must
be filled in except the object, which is managed by the RapidIO MQT.
typedef struct MSGQ_TransportObj {

MSGQ_MqtInit initFxn; /* Transport init function */
MSGQ_TransportFxns *fxns; /* Transport interface functions */
Ptr params; /* Transport-specific setup parameters */
Ptr object; /* Transport-specific object */
Uint16 procId; /* Processor Id that mqt talks to */

} MSGQ_TransportObj;

The following are the descriptions and the values that the user should use for a RapidIO MQT instance.

Table 1. RapidIO MQT Instance

Field Name Type Description RAPIDIOMQT values

initFxn MSGQ_MqtInit MQT’s init function RAPIDIOMQT_init

fxns MSGQ_TransportFxns Pointer to the transport’s &RAPIDIOMQT_FXNS
interface functions

params Ptr MQT’s parameters Refer to section 8 for more
details

object Ptr State information for the MQT NULL
instance

procId Uint16 Processor Id that this MQT Depends
instance is communicating with

Note: The MSGQ_config structure and transports array must be persistent for the life of the
application. The params structure does not need to be persistent. It is only used during
DSP/BIOS initialization.

RapidIO MQT4 SPRAAD3A–December 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD3A

www.ti.com

7.4 Code Example

8 Buffer Descriptors

8.1 Buffer Descriptor Structure

nextDescPtr

buffPtr

opt1

opt2

CPPI Buffer Descriptor

31 . . . 0

Buffer Descriptors

Here is a code snippet for adding a RapidIO MQT into the MSGQ_config variable. This code assumes this
is processor 0 of a three processor system.

Note: The structure of params1 and params2 in the below snippet are discussed in Section 10.

#define NUMPROCESSORS 3
static MSGQ_TransportObj transports[NUMPROCESSORS] =
{ MSGQ_NOTRANSPORT,
{RAPIDIOMQT_init, &RAPIDIOMQT_FXNS, ¶ms1, NULL, 1},
{RAPIDIOMQT_init, &RAPIDIOMQT_FXNS, ¶ms2, NULL, 2}

};

MSGQ_Config MSGQ_config = {msgQueues, /* Array of message queues */
transports, /* Array of transports */
NUMMSGQUEUES, /* # of message queues in array*/
NUMPROCESSORS, /* # of transports in array */
0, /* 1st uninitialized msg queue */
MSGQ_INVALIDMSGQ, /* no error handler queue */
POOL_INVALIDID}; /* allocator id for errors */

The main communication between the RapidIO MQT and the RapidIO peripheral is done via CPPI
queues. There are 16 Rx and 16 Tx CPPI queues. Buffer descriptors are used to pass messages between
the RapidIO peripheral and the RapidIO MQT. The following is a brief overview of how buffer descriptors
are used.

Note: The application code does not need to manage or access the buffer descriptors (the
RapidIO MQT does that), but the application writer must be familiar with them to configure
the RapidIO MQT properly.

The following is a CPPI buffer descriptor:

Figure 2. CPPI Buffer Descriptor

SPRAAD3A–December 2006 RapidIO MQT 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD3A

www.ti.com

8.2 Overview

8.3 Rx

8.4 Rx Burst Receives

8.5 Tx

8.6 Tx Burst Transmits

Buffer Descriptors

Table 2. CPPI Buffer Descriptor

Field Name Description

nextDescPtr Pointer to the next buffer descriptor. Used to chain buffer descriptors that are being transmitted or
received.

buffPtr Pointer to a received message in the Rx case, or a message to be sent in Tx case. In either case, for
the RapidIO MQT implementation, it points to a MSGQ message.

opt1 Routing information. For example:
• Rx: source device id, priority, destination mailbox.
• Tx: destination device id, priority, port id, SSIZE, destination mailbox

opt2 Length information. For example
• Rx: Start of msg, end of msg, end of queue, ownership, length, completion code
• Tx: Start of msg, end of msg, end of queue, ownership, length, completion code, retry count

There is a dedicated SRAM location (i.e., the address is 0x02e00000 on the C6455) that is intended for
the buffer descriptors. The size of this block is 16384 bytes. The user can select to use a different location
if they so desire. The location of the buffer descriptor memory is a configuration parameter (see
Section 11, for more details). Cache coherency is an issue if the buffer descriptors are not placed in the
reserved location. Refer to Section 19 for more details.

During initialization, the RapidIO MQT primes all of the Rx CPPI queues with buffer descriptors that are
pointing to empty messages as specified in the configuration. During runtime, incoming RapidIO
messages are DMA’d into these empty messages.

If the application receives several messages in a burst and exhausts all of the primed Rx buffer
descriptors, the RapidIO peripheral drops the msg. Therefore it is important that there are a sufficient
number of Rx buffer descriptors allocated.

Each RapidIO MQT instance has a Tx CPPI queue that it uses to transmit all its messages to the remote
processor.

If the application sends a burst of messages to a remote processor and there are no free buffer
descriptors in the associated Tx CPPI Queue, the messages are placed on an internal pending queue.
Once a buffer descriptor becomes available, the first message on the pending queue is sent. This is done
automatically and does not require any user interaction.

RapidIO MQT6 SPRAAD3A–December 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD3A

www.ti.com

9 MQT Instance Parameters

MQT Instance Parameters

Each RapidIO MQT instance has its own RAPIDIOMQT_Params. Below is the description of each field in
the structure.
typedef struct RAPIDIOMQT_Params {

Uns maxOutOfOrder;
Uns numTxBuffers;
Uint16 dstDevId;
Uint8 dstDevId16Bit;
Uint8 txMbox;
Uint8 txCppiQueueId;
Uint8 txCppiQueueWeight;
Uint8 portId;
Uint8 retries;
Uint8 ssize;

} RAPIDIOMQT_Params;

Table 3. MQT Instance Parameters

Field Name Type Description

maxOutOfOrder Uns Maximum depth of messages to wait for an out of order message. See Section 10.1 for more
details.

numTxBuffers Uns Number of buffer descriptors that this MQT instance will use for transmitting. With more
buffer descriptors, there is a smaller chance of messages being placed on a pending queue.

dstDevId Uint16 Device Id of the destination Rapid IO device.

dstDevId16Bit Uint8 TRUE: the above dstDevId is 16-bit

FALSE: the above dstDevId is 8-bit

txMbox Uint8 Value to be placed in the mbox field for all the RapidIO messages sent by this MQT
instance. Values = 0-3

txCppiQueueId Uint8 Which Tx CPPI queue that this MQT instance will use. Values = 0-15

txCppiQueueWeight Uint8 Each Tx CPPI queue has a weighting value. The queues are processed in round-robin. The
default is to process one message in a queue, then move to the next queue. This parameter
allows a user to specify that the RapidIO peripheral should process more than one message
before moving to the next queue. For example, if this parameter is set to ‘5’, the peripheral
will process up to 5 messages (if present) on the queue before moving round-robin to the
next Tx queue. Values = 0-15

portId Uint8 When a message is transmitted out this MQT instance, which RapidIO port it will be sent on.
Values = 0-3

retries Uint8 Number of times the RapidIO peripheral will attempt to resend a message.

ssize Uint8 Segment size for the RapidIO segments. Refer to Section 11.7.

1001b (9) -> 8 byte segments (max MSGQ msg = 128 bytes)

1010b (10) -> 16 byte segments (max MSGQ msg = 256 bytes

1011b (11) -> 32 byte segments (max MSGQ msg = 512 bytes)

1100b (12) -> 64 byte segments (max MSGQ msg = 1024 bytes)

1101b (13) -> 128 byte segments (max MSGQ msg = 2048 bytes)

1110b (14) -> 256 byte segments (max MSGQ msg = 4096 bytes)

Note: The params structure does not have to be persistent during runtime. It is only used during
DSP/BIOS initialization (i.e. before the execution of the threads). The configuration
parameters cannot be changed during runtime.

SPRAAD3A–December 2006 RapidIO MQT 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD3A

www.ti.com

9.1 Out of Order Messages

9.2 Sharing Tx CPPI Queues

MQT Instance Parameters

With RapidIO, there is a potential that messages can arrive in a non-FIFO order. The RapidIO MQT
corrects the ordering of messages up to a limit. It does not correct lost messages.

The configuration parameter maxOutOfOrder specifies how many messages will be delayed while waiting
for an out of order message. Take the following examples. Assume the maxOutOfOrder parameter is set
to 1 and three messages were sent (A, B and C)

Order sent Order received Result

A B C B A C MQT re-orders the messages correctly

A B C B C A MQT drops message A since it was 2 places out of
order.

Note: An error message will be log
(see Section 20).

Messages may not be coming in a synchronous manner, so the RapidIO MQT sends an internal sync
message to the remote processor whenever a message is received out of order. The sync message
makes sure that an out of order message is not delayed too long in the case a message is lost. For
example, assume the maxOutOfOrder parameter is set to 2 and three messages were sent (A, B and C),
but A was dropped.

Order sent Order received Result

A B C B C B and C are sent to the application once the sync
reply is received.

Note: An error message will be log
(see Section 20).

Different RapidIO MQT instances can share the same Tx CPPI queue. This configuration may increase
message latency since messages may be behind other messages destined for other processors. Using
one Tx CPPI queue per MQT instance avoids this issue.

If multiple instances share the same Tx CPPI queue, the weight of the first RapidIO MQT instance is used.
The number of Tx buffers, however, is cumulative. For example, assume both RapidIO MQT instances to
processor 1 and 2 are using Tx CPPI queue 0 with the following config parameters:

MQT Instance to processor 1 MQT Instance to processor 2

txCppiQueueWeight = 2 txCppiQueueWeight = 1

numTxBuffers = 3 numTxBuffers = 3

Tx CPPI Queue would end up having a weight value of 2. However, the Tx CPPI queue will have a free
list of 6 buffer descriptors that are shared between the two MQT instances.

RapidIO MQT8 SPRAAD3A–December 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD3A

www.ti.com

9.3 Code Example

10 RapidIO MSGQ System Configuration

RapidIO MSGQ System Configuration

Following is a code snippet for configuring a RapidIO MQT instance. Also shown is the MSGQ_config for
completeness. This code assumes this is processor 0 of a three processor system.
RAPIDIOMQT_Params params1 = {

3, // max num of outstanding our of order msgs
NUMTXBUFFERS // numTxBuffers
0xBEEF, // dstDevId
TRUE, // dstDevId16Bit
3, // txMbox
0, // txCppiQueueId
2, // txCppiQueueWeight
3, // numTxBuffers
0, // portId
0, // retries 0 -> infinite
14 // ssize = 256bytes -> max message size is 4096 bytes

};
RAPIDIOMQT_Params params2 = {

3, // max num of outstanding our of order msgs
NUMTXBUFFERS // numTxBufffers
0xFADE, // dstDevId
TRUE, // dstDevId16Bit
2, // txMbox
1, // txCppiQueueId
1, // txCppiQueueWeight
3, // numTxBuffers
1, // portId
0, // retries 0 -> infinite
14 // ssize = 256bytes -> max message size is 4096 bytes

};

#define NUMPROCESSORS 3
static MSGQ_TransportObj transports[NUMPROCESSORS] =
{ MSGQ_NOTRANSPORT,
{RAPIDIOMQT_init, &RAPIDIOMQT_FXNS, ¶ms1, NULL, 1},
{RAPIDIOMQT_init, &RAPIDIOMQT_FXNS, ¶ms2, NULL, 2}

};

MSGQ_Config MSGQ_config = {msgQueues, /* Array of message queues */
transports, /* Array of transports */
NUMMSGQUEUES, /* # of message queues in array*/
NUMPROCESSORS, /* # of transports in array */
0, /* 1st uninitialized msg queue */
MSGQ_INVALIDMSGQ, /* no error handler queue */
POOL_INVALIDID}; /* allocator id for errors */

There are system level parameters for the RapidIO MQT. For example, the Rx CPPI queues are not tied
to a specific RapidIO MQT instance. The way these are communicated to the RapidIO MQT is via a
required variable called RAPIDIOMQT_config of type RAPIDIOMQT_Config. Below is the
RAPIDIOMQT_Config structure. The application must provide the RAPIODIOMQT_config variable in the
same way that it provides MSGQ_config variable.

SPRAAD3A–December 2006 RapidIO MQT 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD3A

www.ti.com

RapidIO MSGQ System Configuration

typedef struct RAPIDIOMQT_Config {
Ptr bufDescAddr;
size_t bufDescSize;
Uint32 interruptPacingValue;
Uns interruptSrc;
Uint16 ctrlMsgPoolId;
RAPIDIOMQT_RxParams *rxQueueParams;
Uint8 numRxQueueParams;

} RAPIDIOMQT_Config;

Field Name Type Description

bufDescAddr Ptr Base address of the memory that will be
used to allocate buffer descriptors.
Allocation occurs during initialization.
(e.g., reserved buffer descriptor memory
on c6455: 0x02e00000)

bufDescSize size_t Size of the buffer descriptor space.
(e.g.,reserved buffer descriptor memory
size on c6455: 16384)

interruptPacingValue Uint32 Throttling mechanism. How many DMA
clock cycles the RapidIO peripheral
waits before re-asserting an interrupt
(assuming any messages were received
or sent).

interruptSrc Uns Which interrupt is used for processing
the Tx and Rx CPPI queues.

ctrlMsgPoolId Uint16 A MQT instance needs to send internal
messages (e.g., sync, handshakes,
locate requests and responses) to its
counterpart MQT on the other processor.
This parameter specifies from which
POOL the MQT instance will allocate.
Note, these internal messages are of
type RAPIDIOMQT_CtrlMsg. The POOL
should have N messages per MQT
instance, where is N is equal to or
greater than the number of possible
concurrent locate requests + the
maximum number of out of order
messages allowed. The MQT does not
send internal messages as the norm
during runtime.

rxQueueParams RAPIDIOMQT_RxParams Pointer to array of Rx CPPI params.
Refer to the RAPIOIOMQT_RxParams
below.

numRxQueueParams Uint8 Number of Rx CPPI queues in the
rxQueueParams array.

RapidIO MQT10 SPRAAD3A–December 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD3A

www.ti.com

10.1 Mbox <-> Rx CPPI Mapping

RapidIO MSGQ System Configuration

The following is the RAPIDIOMQT_RxParams structure which is needed in the RAPIDIOMQT_Config
structure.
typedef struct RAPIDIOMQT_RxParams {

Uint8 rxCppiQueueId;
Uint8 rxMbox;
Uint16 numRxBuffers;
Uint16 maxMsgSize;
Uint16 poolId;

} RAPIDIOMQT_RxParams;

Field Name Type Description

rxCppiQueueId Uint8 Id of the Rx CPPI queue that will be used to
map the below rxMbox to. Values = 0-3

rxMbox Uint8 Mbox id that will be mapped to the above Rx
CPPI Queue. Values = 0-3

numRxBuffers Uint16 Number of buffer descriptors that the RapidIO
ISR will use for receiving for the above Rx CPPI
queue. With more buffer descriptors, there a
smaller chance of messages being delayed or
dropped.

maxMsgSize Uint16 The maximum size message that will be coming
in this Rx CPPI Queue.

poolId Uint16 The pool that will be used to allocate buffers.
The incoming messages will be placed in these
buffers.

Note: The above params structures do not have to be persistent during runtime. They are only
used during initialization (e.g., before the threads start to execute).

The RapidIO MQT allows the use of 4 RapidIO mailbox values. Each incoming message has a mailbox
value that is used to determine which Rx CPPI queue it will be placed on. The RapidIO MQT requires that
each mailbox value must be placed on a different Rx CPPI queue. For example, all incoming messages
with mailbox value 0 are placed on Rx CPPI queue 0, all incoming messages with mailbox value 1 are
placed on Rx CPPI queue 1, etc.

Note: The RapidIO MQT’s ISR processes Rx CPPI queue 0 first, then queue 1, etc.

SPRAAD3A–December 2006 RapidIO MQT 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD3A

www.ti.com

10.2 Code Example

RapidIO MSGQ System Configuration

Following is a code snippet for configuring the RapidIO MQT at a system level. Also shown are the
MSGQ_config and RapidIO MQT instance configurations for completeness.
#define NUMRXMBOX 4
RAPIDIOMQT_RxParams rxParams[NUMRXMBOX] = {

{0, 0, 2, MSGSIZE, APPPOOLID}, // incoming mbox 0 msgs -> Rx CPPI Queue 0
{1, 1, 2, MSGSIZE, APPPOOLID}, // incoming mbox 1 msgs -> Rx CPPI Queue 1
{2, 2, 2, MSGSIZE, APPPOOLID}, // incoming mbox 2 msgs -> Rx CPPI Queue 2
{3, 3, 2, MSGSIZE, APPPOOLID} // incoming mbox 3 msgs -> Rx CPPI Queue 3

};

RAPIDIOMQT_Config RAPIDIOMQT_config = {
(Ptr)0x02e00000, // bufDescriptorAddr
16384, // bufDescriptorSize
RAPIDIOMQTISRPACINGVAL, // interruptPacingValue
0, // INTDST0
MQTCTRLPOOLID, // ctrlMsgPoolId
rxParams, // rxQueueParams
NUMRXMBOX, // numRxQueueParams

};

RAPIDIOMQT_Params params1 = {
3, // max num of outstanding out of order msgs
NUMTXBUFFERS, // numTxBuffers
0xBEEF, // dstDevId
TRUE, // dstDevId16Bit
3, // txMbox
0, // txCppiQueueId
2, // txCppiQueueWeight
3, // numTxBuffers
0, // portId
0, // retries 0 -> infinite
14, // ssize = 256bytes -> max message size is 4096 bytes

};
RAPIDIOMQT_Params params2 = {

3, // max num of outstanding out of order msgs
NUMTXBUFFERS, // numTxBuffers
0xFADE, // dstDevId
TRUE, // dstDevId16Bit
2, // txMbox
1, // txCppiQueueId
1, // txCppiQueueWeight
3, // numTxBuffers
1, // portId
0, // retries 0 -> infinite
14, // ssize = 256bytes -> max message size is 4096 bytes

};

#define NUMPROCESSORS 3
static MSGQ_TransportObj transports[NUMPROCESSORS] =
{ MSGQ_NOTRANSPORT,
{RAPIDIOMQT_init, &RAPIDIOMQT_FXNS, ¶ms1, NULL, 1},
{RAPIDIOMQT_init, &RAPIDIOMQT_FXNS, ¶ms2, NULL, 2}

};

MSGQ_Config MSGQ_config = {msgQueues, /* Array of message queues */
transports, /* Array of transports */
NUMMSGQUEUES, /* # of message queues in array*/
NUMPROCESSORS, /* # of transports in array */
0, /* 1st uninitialized msg queue */
MSGQ_INVALIDMSGQ, /* no error handler queue */
POOL_INVALIDID}; /* allocator id for errors */

RapidIO MQT12 SPRAAD3A–December 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD3A

www.ti.com

11 Configuration Questions

11.1 How Should I Map My Tx CPPI Queues?

11.2 How Many Tx Buffer Descriptors Should I Use?

11.3 How Should I Map my Rx CPPI Queues?

11.4 How Many Rx Buffer Descriptors Should I Use?

11.5 Initialization Handshake

Configuration Questions

Generally, it is preferable to have one MQT instance per Tx CPPI queue. This prevents messages going
to one processor getting delayed by messages going to another processor. If there are more than 16
remote processors in the system that communicate via RapidIO, the application must have the MQT
instances share some of the Tx CPPI queues. Refer to section Section 10.2 for the impacts of sharing a
Tx CPPI queue.

The more Tx Buffer Descriptors you have, the less chance a message will be placed on a pending queue.

Each mbox id is mapped to a Rx CPPI queue. For systems with four processors or less, each MQT
instances can be configured to use a different txMbox id. This allows the incoming messages for each
processor to get mapped to a different Rx CPPI queue. For systems with more than 4 processors, Rx
CPPI queues will have incoming messages from multiple processors.

There is not an easy answer for this question. It depends on the number of messages flowing through the
system, the number of processors in the system, the pacing threshold for the RapidIOMQT ISR, amount of
memory in the system, size of the messages, number of Tx buffer descriptors, etc.

If all the Rx buffer descriptors get filled up, the RapidIO peripheral will start rejecting messages. In this
case, the message will get dropped.

Note: RapidIOMQT does guarantee that messages are in order, but it does not guarantee the
delivery. This was done for performance reasons

So having enough Rx buffer descriptors is very important.

As receiving processor’s interrupt pacing value goes up, more Rx (and Tx) buffer descriptors are needed
since the RapidIO MQT ISR latency will be increased.

If the goal of the application is to push as much data across the RapidIO link as possible, messaging is
not the best solution. The application should really look into using the Direct I/O logical layer of RapidIO.

The MQT instances do an initialization handshake with their counterpart MQTs. This handshake allows the
MQT instances to set (or reset) internal sequence numbers that are using to maintain in-order delivery.
The handshake is managed by the RapidIOMQT PRD (Section 14.3). During start-up, the PRD sends a
handshake request to the remote processors. Once all handshakes are completed, the PRD ceases
running. Before the handshake is completed with a remote processor, no communication with that
processor is allowed. Communication with other processors are that have completed the handshake is
allowed even if other processors have not completed the handshake.

There are one direct factor and two indirect factors in determining the timing of the handshake.

• PRD period
• RapidIO peripheral configuration for timeouts
• Number of messages

SPRAAD3A–December 2006 RapidIO MQT 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD3A

www.ti.com

11.6 Interrupt Selection

11.7 Message Sizes

Configuration Questions

The smaller the PRD period, the smaller the latency for the handshake to complete once the remote
processor is initialized. However, if the RapidIO peripheral configuration for timeouts is large, there can be
many outstanding handshake requests. If the number of MSGQ messages in the system is small and the
timeout is larger and the PRD period is small, there could be allocation errors. The MQT reports this via
MSGQ_MQTERRORALLOC errorType (refer to Section 19).

If the remote processor is not running, the handshake requests transmission timeout in the RapidIO
peripheral. This error state is denoted by a bad completion code in the transmit buffer descriptor. The
RapidIO MQT reports this via MSGQ_MQTERRORPHYSICAL errorType (refer to Section 19).

The RapidIO peripheral has multiple interrupts INTDST0-INTDST7. These interrupts can be used for
Direct I/O, messaging, port errors and reset.

The user can configure the RAPIDIOMQT to use any one of these interrupts. For example on the C6455,
there are 4 different interrupts: INTDST0, INTDST1, INTDST4 and INTDST5 (however INTDST5 is
dedicated to reset). To have the RAPIDIOMQT use one of these sources, two things must be done.

• Set the interruptSrc in the RAPIDIOMQT_config structure (Section 10)
• Set the interruptSelectNumber in the HWI configuration (Section 14.4)

The example code uses INTDST0, so the RAPIDIOMQT_config.interruptSrc is set to 0 and the
bios.HWI_INT10. interruptSelectNumber is set to 20 (the corresponding selector value for INTDST0). To
use INTDST1, the values would be RAPIDIOMQT_config.interruptSrc = 1 and bios.HWI_INT10.
interruptSelectNumber = 21.

The RAPIDIOMQT does not do segmentation and re-assembly (SAR) of the messages. The maximum
size RapidIO message is 4096 bytes. Therefore, the maximum size message that the RAPIDIOMQT
supports.

The RapidIO peripheral might break up a message to be transmitted into segments (up to 16). On the
receiving side, the peripheral re-assembles the message. The number of segments depends on the size
of the message and the requested ssize (segment size) in the RAPIDIOMQT_Params instance
configuration.

The supported values for segment size are:

• 1001b (9) -> 8 byte segments (max message = 128 bytes)
• 1010b (10) -> 16 byte segments (max message = 256 bytes)
• 1011b (11) -> 32 byte segments (max message = 512 bytes)
• 1100b (12) -> 64 byte segments (max message = 1024 bytes)
• 1101b (13) -> 128 byte segments (max message = 2048 bytes)
• 1110b (14) -> 256 byte segments (max message = 4096 bytes)

If large messages (e.g., 4096 bytes) are going to be transmitted, the ssize must be set to 1110b. Having a
large ssize minimizes the number of segments used to send smaller messages. For example, only two
segments are used to send a 512 byte message when ssize is set to 1110b (e.g. 256byte segments). The
fewer the segments, the better the performance because of the smaller amount of header overhead and
segment formation.

However, there is a downside to having a large ssize, namely memory usage. First some background: on
the receiving side, the peripheral looks at the first incoming segment of a message. It determines the
amount of memory that is needed to receive the entire message. The peripheral determines this by
multiplying the ssize by the number of segments to be received (part of the RapidIO header). The
peripheral checks the corresponding Rx CPPI queue to see if there is enough memory. If there is not
enough memory, the message is rejected. Otherwise, the segment is processed.

14 RapidIO MQT SPRAAD3A–December 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD3A

www.ti.com

12 Interrupt and Peripheral Initialization

13 RAPIDIOMQT_setCopyFxn API (Advanced Topic)

Interrupt and Peripheral Initialization

Note: The peripheral does not know size of the last segment (which might be smaller than
ssize). This causes the receive buffers, whose size to determined by the maxMsgSize
field in RAPIDIOMQT_RxParams, to be multiples of the ssize.

An example can easily show the issue. Have ssize be 1110b (256byte segments, 4096 byte max
message). Have the maxMsgSize field be set to 320 bytes. When a 320 byte message is transmitted, the
peripheral breaks the message into two segments: one 256 bytes and the other 64 bytes. On the receiving
side, the peripheral sees the first segment and determines that it needs 512 bytes to receive the message
(ssize * 2 segments). Since the peripheral was primed with 320 byte messages, the transmit fails.

Here are ways to correct the above example:

• Increase the maxMsgSize to a multiple of the ssize, namely 512 bytes. This wastes memory, but has
the best performance.

• Decrease the ssize to 1100b (64 byte segments). Now the peripheral makes five 64 byte segments.
On the receiving side, the five segments are re-assembled into the 320 byte buffers. Minimal memory
waste, but performance impact.

Of course, there can be a compromise in the middle (e.g., set ssize to 1101b (128byte segments) and
maxMsgSize to 384 bytes)

The RapidIO MQT initializes the following items of the RapidIO peripheral:
• CPPI Rx and Tx HDP registers
• Rx Mbox <-> Rx CPPI queue mappings
• Mapping the RX and TX CPPI queue to an interrupt (e.g., INTDST0)

The application needs to configure the rest of the RapidIO peripheral. The sample application does this
initialization in three places:
• srio_init(): Sets up the RapidIO SerDes registers
• rapidIOTest.tci: Plugs the Rapid messaging ISR and other objects (refer to Section 15).
• configTransports(): Takes the Serial RapidIO (SRIO) peripheral out of power-save

There is a RAPIDIOMQT_setCopyFxn() API. This allows a user to specify a copy function to be used in
the MQT.

SPRAAD3A–December 2006 RapidIO MQT 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD3A

www.ti.com

14 Required Statically Configured Objects

— Void RAPIDIOMQT_setCopyFxn(RAPIDIOMQT_CopyFxn fxn, Ptr copyHandle);

Void RAPIDIOMQT_setCopyFxn(RAPIDIOMQT_CopyFxn fxn, Ptr copyHandle);

Parameters

fxn Function that is called by MQT

copyHandle Handle that is passed to the copy function

Description Here is the prototype for the fxn:

typedef Bool (*RAPIDIOMQT_CopyFxn)(Ptr handle, Char *src, Char *dst, Uint16 size);

First some background material.

As part of the RapidIO MQT configuration, you need to specify which pool to use for incoming messages,
the worst-case message size and how many messages to prime the receive link list (this is in the
RAPIDIOMQT_RxParams structure). The peripheral DMAs incoming data into these messages. Since
these messages are then given to the application once they are filled in with incoming data, you need to
have many worst-case size messages. This potentially wastes significant memory.

Note: Once a message is received from the peripheral, another worst-case message is
allocated and given to the peripheral.

If the application specifies a copy function via RAPIDIOMQT_setCopyFxn, once an application message
comes in, the MQT looks in the message to determine its size and its pool id (after it managed cache
coherency if needed). The MQT then allocates a “correct-size” message (via MSGQ_alloc) from that pool.
The MQT then calls the application specified copy function with the original (src) and new (dst) messages
and the size. It also passes the copyHandle. The application can then do a DMA or memcpy into the dst
message. This allows for fewer worst-case messages. The down-side is the performance impact of the
additional DMA.

The return type of the specified copy function is a Bool. If the copy function copied the data from the dst to
the src, the function should return TRUE. If the copy function returns FALSE, it means that the copy did
not occur. If the return code is FALSE, the MQT sends the original buffer that the message was received
into (e.g., dst) to the application. This return code can be used to minimize the number of copies for large
messages (i.e., why copy a received worst-case size message from one large buffer to another).

The MQT never uses the copyHandle directly. The structure of this handle is managed by the application.
In the example code, the CSL DAT module is used. No additional information is needed to do the
DAT_copy or DAT_wait. If another type of data movement module was used (e.g. EDMA3), the
copyHandle could be used to store information (e.g. chan or TCC) to be used when starting the transfer.

Note: All the application messages in the example are the same size, so there is no need to use
the copy function, but it is included to demonstrate the concept.

There are several statically configured items that the RapidIOMQT requires. They are statically defined to
reduce code footprint. The items are discussed below. Note:

Note: The example application statically defines these in rapidiotest.tci.

RapidIO MQT16 SPRAAD3A–December 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD3A

www.ti.com

14.1 LOG Object

14.2 RapidIOMQT SWI

14.3 RapidIOMQT PRD

14.4 RapidIOMQT ISR

14.5 MSGQ and POOL Enabled

Required Statically Configured Objects

The RapidIOMQT has debug trace capabilities. The user must supply a statically configured LOG_Obj
called “trace”. For example:
trace = bios.LOG.create("trace");
trace.bufLen = 1024;
trace.logType = "circular";

The LOG object is only needed if the user wants to enable the RAPIDIOMQT trace (refer to Section 16)

The user must supply a statically created SWI whose function is RAPIDIOMQT_swi and priority is 1.
During runtime, the SWI off-loads processing from the RapidIO MQT ISR to minimize interrupt latency.
The RapidIO MQT SWI has the following responsibilities:
• Manage cache coherency of incoming messages
• Process incoming locate requests and responses
• Handle incoming application messages (e.g., placing them on the correct message queue destination)
• Manage out of order messages (refer to Section 10.1 for more details).

var SWI = bios.SWI.create("RAPIDIOMQT_swiObj");
SWI.priority = 1;
SWI["fxn"] = prog.extern("RAPIDIOMQT_swi");

The errorThread is a SWI in the example. This was done for 2 reasons:

1. SWI have higher priority than TSKs.
2. To show that MSGQ can work with SWIs.

The user must supply a statically created PRD where the configuration is as follows:
var PRD = bios.PRD.create("RAPIDIOMQT_prdObj");
PRD.period = 1000; /* 1 second */
PRD.mode = "one-shot";
PRD["fxn"] = prog.extern("RAPIDIOMQT_prd");

During initialization, the MQT instances handshake with the remote side. If the remote side does not
respond, the another handshake request is sent. The PRD is responsible for sending the handshake
request. It quits running once all the MQTs have completed their startup handshake.

The user must plug the RapidIO ISR with the function RAPIDIOMQT_isr. For example:
bios.HWI_INT10.fxn = prog.extern("RAPIDIOMQT_isr");
bios.HWI_INT10.useDispatcher = true;
bios.HWI_INT10.interruptSelectNumber = 20;

The user must enable POOL and MSGQ. For example:
bios.MSGQ.ENABLEMSGQ = true;
bios.POOL.ENABLEPOOL = true;

SPRAAD3A–December 2006 RapidIO MQT 17
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD3A

www.ti.com

15 Example Overview

16 Debug Capabilities

Example Overview

The example that is included in the package is similar to the standard DSP/BIOS 5.21 (or higher)
msgq_tsk2tsk example. This example is intended to run on a two chips with the RapidIO. The biggest
change from the 5.21 example is the RapidIO MQT configuration change, the transports array and
plugging of the RapidIO ISR. Following is the basic data flow:
main()
if processor 0: Open the boss message queue and create the boss thread.
if processor 1: Open the worker message queue and create the worker thread.
Open error message queue and create the error thread.
srio_init to initialize peripheral

workerThread()
Loop

MSGQ_get message from the worker thread
Determine sender
MSGQ_free message
Loop number of times requested by the boss

MSGQ_alloc message
MSGQ_put message

bossThread()
MSGQ_locate to locate worker thread
Loop

MSGQ_alloc message
Fill in message with the number of messages to receive.
MSGQ_put message to worker
Loop number of times requested by the boss

MSGQ_get message from the boss queue
MSGQ_free message

errorThread()
Loop

MSGQ_get message from the error queue
Log MQT error via LOG_printf

The example has multiple pools to manage the different types of messages: application, MQT internal
control messages and error messages. Having different pools is not required, but makes a system easier
to maintain.

The example is intended to run on either board of the EVM (i.e. DSK or mezzanine). To allow a single
image to run on either board, there is a GBL_initFxn function in the example that determines which board
it is on. Once it determines which board, it sets up the transports table in MSGQ_config accordingly and
sets the GBL_procId (if not 0). Using the GBL_initFxn for processor id and transport table management is
a short-term work-around. A future release of DSP/BIOS will address single image on multiple processors
in a more structured way. An enhancement request has been open (DSP/BIOS tracking number
SDSCM00003748). The GBL_initFxn is configured statically in rapidiotest.tci.

Note: GBL_initFxn() runs before DSP/BIOS is initialized.

The RapidIO MQT has debug capabilities. If the following compiler option is specified:
-d”RAPIDIOMQT_DEBUG”, the RapidIO MQT will include debug information via the LOG module. If this
compiler option is not defined, no debug output will be generated. Note: the application needs to supply a
LOG_Obj called “trace”

RapidIO MQT18 SPRAAD3A–December 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD3A

www.ti.com

17 Modifying Source

18 Cache

18.1 Buffer Descriptors

18.2 Messages

Modifying Source

The RapidIO MQT and sample program is shipped with full source, so a user can modify as needed.
Some keys points if you modify the files:

• Hard-coded constants: There are several hard-coded constants in rapidiomqt.h and _rapidiomqt.h.
These values (e.g., RapidIO priority of transmitted messages) could have been configuration
parameters, but instead are hard coded constants to minimize footprint and configuration complexity.

Since the CPU Core and the RapidIO peripheral access the same memory, care must be taken to avoid
any cache coherency issues. There are two places where cache coherency are an issue: buffer
descriptors and messages.

As described in Section 9.2, there is a reserved location for buffer descriptors. Since this memory is in
non-cacheable, there are no cache coherency issues. The RapidIO peripheral and the core access this
memory via the same mechanisms. The buffer descriptors can be placed elsewhere as long as they are
not cache-able. The RapidIO MQT does not maintain cache coherency on the buffer descriptors for
performance and footprint reasons.

If messages are in internal memory, there are no cache coherency issues with the RapidIO peripheral.
Similarly, if messages are in external memory and neither L1D nor L2 cache are enabled, there are no
cache coherency issues. If the messages that the RapidIO peripheral are interacting with (either sending
from or receiving into) are in external memory and there is cache enabled (L1D and/or L2 cache), two
actions must be done:

1. Rebuild the RAPIDIOMQT library with the following compiler option:
"-dRAPIDIOMQT_CACHECOHERENCY". The MQT performs the necessary cache coherency actions
(e.g. write-back cache before giving the message to the peripheral to send out or invalidate cache for
incoming messages). The MQT uses DSP/BIOS BCACHE calls.

2. All messages must be aligned on a cache line boundary and their size must be a multiple of a cache
line size. So if L1D is enabled (but not L2 cache), the messages that interact with the peripheral must
be aligned on a 64 byte boundary and must be a multiple of 64 bytes. If L2 cache is enabled, these
values become 128 bytes.

In the example application, both the application messages and the internal MQT control messages are
used with the RapidIO peripheral. So they are aligned on a 128 byte boundary and a multiple of 128
bytes. This was unnecessary since all data is currently in internal memory, but was included to help
demonstrate the principle.

Note: The application does not take DDR2 out of power-save or configure it. Refer to the CSL
examples on how to do this.

SPRAAD3A–December 2006 RapidIO MQT 19
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD3A

www.ti.com

19 Errors

Errors

Errors may occur in the RapidIO MQT that cannot be communicated to the application via a return code
(e.g., errors that occur in the RapidIO MQT ISR). MSGQ has a facility to receive errors messages for
MQTs. Refer to the BIOS/DSP documentation for MSGQ_setErrorHandler() and also refer to the
RapidIOTest example included in the installation.

The following is the format of the error message:
typedef struct MSGQ_AsyncErrorMsg {

MSGQ_MsgHeader header;
MSGQ_MqtError errorType;
Uint16 mqtId;
Uint16 parameter;

} MSGQ_AsyncErrorMsg;

Here are the errors that the RapidIO MQT might log and a description of each field.

Note: The mqtId corresponds to the MQT instance that logged the error. If the instance cannot
be determine (e.g., the ISR logged the error), a value of 0xFFFF is used for mqtId.

errorType Description

MSGQ_MQTFAILEDPUT If a message cannot be placed to the remote or
local processor, this error is logged and the
message is dropped. Note: this error could
signify that an internal message could not be
sent also. The msgId of the dropped message is
placed in the “parameter” field of the error
message.

MSGQ_MQTERRORINTERNAL Some internal error happened that might affect
the health of the system. The unique placement
number is in the “parameter” field of the error
message. This allows a user to debug the
problem.

MSGQ_MQTERRORALLOC If the MQT cannot allocate a message, this error
message is logged. The “parameter” field holds
the size of the message that was trying to be
allocated.

MSGQ_MQTERRORPHYSICAL If there is a RapidIO transmission or receiving
error, the MQT logs this type of error. The
“parameter” field holds the completion code
(CC) of the failed transmission. Refer to the
RapidIO User Guide for details about the
different completion codes.

Note: The user must free all error messages that it receives.

RapidIO MQT20 SPRAAD3A–December 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD3A

www.ti.com

20 Performance

Performance

The following benchmarks were done on the 6455EVM running at 1000MHz. The RapidIO linkrate was
3.125Gbps and 1 port was used. All code was compiled with -o2 and no symbols. The RapidIO MQT was
built with no debugging trace enabled. L1D and L1P were enabled and the sizes were 32KB. L2 cache
was not enabled. All messages are in internal memory and the processors are running at 1GHz.

Note: The CLK ISR was running during the test. This ISR had minimal impact on the results (i.e.
< .5%) .

TSK1 allocates a message before entering its main loop. In the loop, TSK1 sends the message to TSK2.
TSK2 replies with the same message (i.e. it does not free the message and allocate a new one). This is
repeated 10000 times. So for entire test the following APIs are called 20000 times in the application code:
MSGQ_put() and MSGQ_get(). TSK1 is timed from when it sends the first message to when it receives
the 10000th reply. Time is in CPU cycles. The test was based off the example that is shipped with the
RapidIO package.

The below table are results when the two TSKs are on the different processors (i.e. uses RapidIO MQT).
Message size does matter in the tests because of the DMA movement done by the RapidIO peripheral
and the number of RapidIO segments per message. The TSK based threading model uses semaphores
for its MSGQ notification.

#of % Utilization
ping-pongs Msg Size ISR %’CPU Wall Time (in CPU Theoretical Time of the Half

Threading Model Messages (bytes) Pacing Load cycles) (in CPU cycles) Duplex Link

1TSK/processor 10,000 64 10 53 67,067,000 4,608,000 6

1TSK/processor 10,000 64 1000 46 78,586,000 4,608,000 7

1TSK/processor 10,000 256 10 42 84,579,000 16,896,000 20

1TSK/processor 10,000 256 1000 42 84,605,000 16,896,000 20

1 TSK/processor 10,000 1024 10 27 141,563,000 67,584,000 48

1 TSK/processor 10,000 1024 1000 27 141,562,000 67,584,000 48

1TSK/processor 10,000 4096 10 11 350,673,000 270,336,000 77

1 TSK/processor 10,000 4096 1000 11 350,664,000 270,336,000 77

The theoretical time is the amount of time (in CPU cycles) to transmit and receive 10000 messages in half
duplex. The formula for this is:

(Msg size + RapidIO packet header overhead) * 8bits/byte * # of msgs * 2 / adjusted linkSpeed * CPU
speed = Theoretical Time

The adjusted linkSpeed = 8/10 * linkSpeed. This is to account for the 8b/10b encoding scheme.

The “ * 2” is because each ping-pong message is sent and received in half duplex.

4096 byte msg size example: (4096 + 128) * 8 * 10,000 * 2 / 2.5Gbps * 1GHz = 270,336,000

The test was repeated using two TSKS on each processor (i.e. two ping-pongs are going over RapidIO
now). This was a full-duplex test. Below are the results from this test.

of Msg Size % Utilization
Ping-Pongs (bytes) ISR % CPU Wall Time (in CPU Theoretical Time (in of the Full

Threading Model Messages Pacing Load cycles) CPU cycles) Duplex Link

2 TSKs/processor 10,000 4096 1000 23 400,842,000 270,336,000 67

The theoretical time is still the same since the test allows the RapidIO link to run in full-duplex.

Each RapidIO packet can hold up to 256 bytes. Therefore the larger messages (e.g. 4096 bytes) are
broken (by the RapidIO peripheral) into multiple RapidIO packets (e.g. 16 packets for a 4096 byte
message). The RapidIO packets header is 8 bytes. From the RapidIOMQT’s perspective, message size
does not impact performance (except potentially when cache coherency management is included in the
MQT).

SPRAAD3A–December 2006 RapidIO MQT 21
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD3A

www.ti.com

21 Footprint

22 Endianness

23 Features not Enabled

Footprint

Here are the footprint numbers for the RapidIO MQT. These numbers reflect only the MQT’s code and
data footprint. They do not include any BIOS APIs (e.g., MSGQ module) or the application’s footprint.
There is no debug logging (RAPIDIOMQT_DEBUG is 0) and the optimization is –o2.

Section # bytes
.far 180
.text 9600
.cinit 40
.bss 8
.switch 128
.const 64
Total 10020 bytes

The RAPIDIOMQT does not do any endian or word size conversions on the data or header portion of the
messages. Therefore all processors that use the RAPIDIOMQT must have the same type of endianness
and word size.

Several features of the Rapid IO peripheral are not being used by the RapidIO MQT.

• SourceId matching. When receiving a message, the Rapid IO peripheral can be configured to only
accept messages from a specific device id. The RapidIO MQT does not enable this feature.

• Re-ordering of the TX CPPI queue: The Rapid IO peripheral can be configured to process the Tx CPPI
queues in non-sequential order (e.g., 11, 5, 7, etc.). The RapidIO MQT does not change the order of
the reset values (i.e. 0, 1, 2, … 15)

• Variable Priority : The RapidIO MQT always uses the same priority when transmitting a buffer.
• 6-bit mbox ids: The RapidIO MQT uses 2-bit mbox ids in the RapidIO message. The RapidIO

peripheral supports an extended mbox id (6-bits).

22 RapidIO MQT SPRAAD3A–December 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD3A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2006, Texas Instruments Incorporated

	Trademarks
	1 Contents of Deliverable
	2 Requirements
	3 Installation
	4 Building
	5 MQT Usage Overview
	6 Direct I/O
	7 MSGQ Configuration
	7.1 MSGQ_Config
	7.2 MQT Instance
	7.3 MSGQ_TransportObj
	7.4 Code Example

	8 Buffer Descriptors
	8.1 Buffer Descriptor Structure
	8.2 Overview
	8.3 Rx
	8.4 Rx Burst Receives
	8.5 Tx
	8.6 Tx Burst Transmits

	9 MQT Instance Parameters
	9.1 Out of Order Messages
	9.2 Sharing Tx CPPI Queues
	9.3 Code Example

	10 RapidIO MSGQ System Configuration
	10.1 Mbox <-> Rx CPPI Mapping
	10.2 Code Example

	11 Configuration Questions
	11.1 How Should I Map My Tx CPPI Queues?
	11.2 How Many Tx Buffer Descriptors Should I Use?
	11.3 How Should I Map my Rx CPPI Queues?
	11.4 How Many Rx Buffer Descriptors Should I Use?
	11.5 Initialization Handshake
	11.6 Interrupt Selection
	11.7 Message Sizes

	12 Interrupt and Peripheral Initialization
	13 RAPIDIOMQT_setCopyFxn API (Advanced Topic)
	14 Required Statically Configured Objects
	14.1 LOG Object
	14.2 RapidIOMQT SWI
	14.3 RapidIOMQT PRD
	14.4 RapidIOMQT ISR
	14.5 MSGQ and POOL Enabled

	15 Example Overview
	16 Debug Capabilities
	17 Modifying Source
	18 Cache
	18.1 Buffer Descriptors
	18.2 Messages

	19 Errors
	20 Performance
	21 Footprint
	22 Endianness
	23 Features not Enabled

