
Application Report
SPRAAF3–November 2006

TMS320DM64x Video Port to Video Port Communication
Neal Frager, Navaid Karimi, Bernard Thompson Digital Customer Applications Team

ABSTRACT

The video port is one of the essential features of the TMS320DM64x devices. This
application report (1) covers the basics of video port communication and an
implementation of communication between two DM64x video ports and (2) describes
the hardware and software interfaces required to achieve communication between two
DM64x video ports for BT.656-based video streams and RAW mode transfers. This will
be helpful to those who are interested in the video port functionality and those who
need a high-bandwidth communications interface on DM64x-based boards. The
solution presented is ideal for anyone using multiple DM64x devices and looking for
high-speed inter-processor communication.

Contents
1 Video Port Communication .. 2
2 Video Port to Video Port Communication ... 7
3 Conclusion ... 10
4 References... 11
Appendix A Video Port to Video Port Software .. 12
Appendix B Video Port to Video Port Hardware ... 15
Appendix C Video Port to Video Port Examples ... 16

List of Figures

1 Basic Digital Video System.. 2
2 Video Port Block Diagram ... 3
3 BT.656 Frame Diagram.. 5
4 RAW Frame Diagram .. 6
5 Video Port Block Diagram ... 7
6 Video Transcoder... 8
7 High Definition Compression System .. 8
8 Video Port to Video Port Block Diagram .. 9
9 Basic Packetization Scheme for a Frame.. 10
B-1 Daughter Card Block Diagram .. 15

List of Tables

1 BT.656 Data Types... 4
A-1 Video Port to Video Port Software Header Format ... 12
B-1 Daughter Card Jumper/Switch Control Lines.. 15
C-1 BT.656 Example Project Daughter Board Settings ... 16
C-2 RAW Example Project Daughter Board Settings ... 17

SPRAAF3–November 2006 TMS320DM64x Video Port to Video Port Communication 1
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF3

www.ti.com

1 Video Port Communication

Video
decoder

Video
port

DM642

Video
port Video

encoder

Camera
Display

DM642EVM

1.1 Video Port Hardware Architecture

Video Port Communication

This section covers the basics of video port communication, providing some of the background information
required to implement a system where video ports are used to communicate with other video ports. The
video port itself is designed specifically to communicate with other video devices such as video encoders
and video decoders. Figure 1 shows a standard use of the video ports as seen on the DM642 Evaluation
Module (DM642EVM). For additional information on the video port peripheral and the video port
mini-driver, please see the documents listed in Section 4.

Figure 1. Basic Digital Video System

The DM64x video port is a unidirectional, high-speed parallel interface designed primarily for
communication with video encoders (video digital-to-analog converters) and decoders (video
analog-to-digital converters). The DM64x has an advantage over other DSPs due to the video port, as this
peripheral allows for easier video data transfer. It is more efficient than using the EMIF (external memory
interface) and glue logic to capture and display video. The video port has up to 20 data lines (20-bit port);
3 control lines for synchronization; and 2 clock lines, one input and one output. Internally the video port
contains a 5120-byte First In First Out (FIFO) memory which is serviced by the EDMA (enhanced direct
memory access peripheral) only. A high-level block diagram is given in Figure 2. For additional details on
the video port architecture, please see the TMS320C64x DSP Video Port/VCXO Interpolated Control (VIC)
Port Reference Guide (SPRU629).

2 TMS320DM64x Video Port to Video Port Communication SPRAAF3–November 2006
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru629
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF3

www.ti.com

BT.656 capture
pipeline

Y/C video
capture pipeline

10

20

Raw video
capture pipeline

20

TSI capture
pipeline

8

Capture/
display
buffer

(2560 bytes)

BT.656 display
pipeline

Y/C video
display pipeline

Raw video
display pipeline

10

20

20

BT.656 capture
pipeline

Raw video
capture pipeline

10

10

Capture/
display
buffer

(2560 bytes)

Raw video
display pipeline

10

Channel A

Channel B

20

VDIN[19-0]

10

64

DMA
interface

Timing and
control logic

VCTL2

VCTL1

VCTL0

VCLK1

VCLK0

Memory
mapped
registers

32

Internal peripheral bus

64

DMA
interface

20

10

VDIN[19-10]

VDOUT[19-0]

VDOUT[19-10]

1.2 Video Port Modes

1.2.1 BT.656

Video Port Communication

Figure 2. Video Port Block Diagram

The video port supports several modes of video transfer, including BT.656 and RAW. This application
report discusses BT.656 and RAW mode transfers and how they can be used for communication between
two DM64x devices.

BT.656 is a format for sending video data digitally with the special feature of having embedded
synchronization. Embedded synchronization allows the data to be transferred with no separate
synchronization signals. BT.656 is the most common digital video standard used with many video
encoders and decoders. Transferring digital video in Y/Cb/Cr format is rather simple with BT.656. A
BT.656 video stream is composed of three types of data, which stream across the 8-bit or 10-bit bus (see
Table 1).

SPRAAF3–November 2006 TMS320DM64x Video Port to Video Port Communication 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF3

www.ti.com

Video Port Communication

Table 1. BT.656 Data Types

Data Type Description

Blanking data This is given by the transmitter any time a frame is not present. The
blanking data is 0x10 for Y data and 0x80 for Cb/Cr data.
Example: 0x10 0x80 0x10 0x80 0x10 0x80 0x10 0x80 0x10 0x80
0x10 0x80 0x10 …

Timing reference codes These are what allow BT.656 to operate without hardware
synchronization lines. They are of the form ‘0xFF 0x00 0x00 0xXY’
where XY is the actual command.

Image data This is the remainder of the data contained within the fields
themselves, which consists of the Y/Cb/Cr values for each pixel
forming the image itself.
Example: 0xY 0xCb 0xY 0xCr 0xY 0xCb 0xY 0xCr 0xY 0xCb 0xY
0xCr 0xY 0xCb …

The embedded timing reference codes allow the video port to synchronize to the data stream using only
the parallel bus and the clock line. Each code starts with ‘0xFF 0x00 0x00’, and the final byte contains the
actual command. The command is contained within three bits of the final byte; the other bits of the final
byte are used for error checking. The three command bits are F for Field, V for Vertical Sync, and H for
Horizontal Sync. The final byte has the form ‘0b1FVHP3P2P1P0’. The four P bits are protection bits which
act like a checksum for the F, V, and H bits. The F bit determines which field is being transmitted for
interlaced video, field 1 (F = 0) or field 2 (F = 1). The V bit is 1 when blanking data is coming next. The H
bit determines if the code is a start of active video code (H = 0) or an end of active video code (H = 1).

The F, V, and H bits are used to form three basic commands which apply to either field. The commands
are listed below. Figure 3 puts these elements together to show how the timing codes work together to
transmit an interlaced video frame.

• Start of active video (SAV) indicates the beginning of a line of video. In this case, V = 0, as you are no
longer in vertical blanking; H = 0 for SAV.

• End of Active Video (EAV) indicates the end of a line of video. V is also 0 in this case, as you are not
yet entering vertical blanking. H = 1 for EAV.

• Last End of Active Video indicates the end of a field. Here, V = 1, as you are returning to vertical
blanking. H = 1 to indicate EAV.

4 TMS320DM64x Video Port to Video Port Communication SPRAAF3–November 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF3

www.ti.com

SAV

SAV

X/Y start
F=0
V=0
H=0

F=0
V=0
H=0

EAV

EAV

F=0
V=0
H=1

F=0
V=1
H=1

X/Y stop

Actual image data

SAV

SAV

X/Y start
F=1
V=0
H=0

F=1
V=0
H=0

EAV

EAV

F=1
V=0
H=1

F=1
V=1
H=1

X/Y stop

Actual image data

Blanking data

Blanking data

Field 1

Field 2

1.2.2 RAW Mode

Video Port Communication

Figure 3. BT.656 Frame Diagram

RAW mode is a video port configuration in which data is captured and not formatted. RAW mode allows
for almost any video or other data to be brought into or out of the device, as it does not impose any
formatting restrictions. This allows the port to be used for high-speed communications and enables
compatibility with video devices that do not follow any other supported standard of the video port, such as
BT.656. RAW mode can be implemented between two video ports and is quite useful for moving video as
well as non-video data across the interface. RAW mode requires only one control line between the
transmitting and receiving video ports for the most basic operation that constitutes a progressive frame.
The control line connects the transmitter's active video (AVID) signal and the receiver's capture enable
(CAPEN) signal. As data is streamed across the bus, the video port display indicates that there are valid
data with the AVID signal. The receiver captures data only when the CAPEN signal is asserted. The
receiver can synchronize using this single line by waiting for a period of blanking (AVID = 0) of a particular
length, so that it knows when the start of a new field begins. Figure 4 shows a RAW frame diagram with
an interlaced setup that uses two control lines, both the active video line and the field ID line.

SPRAAF3–November 2006 TMS320DM64x Video Port to Video Port Communication 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF3

www.ti.com

X/Y start

X/Y stop

Actual image data
AVID = 1

X/Y start

X/Y stop

Actual image data
AVID = 1

AVID = 0

AVID = 0

Field 1
FVID = 0

Field 2
FVID = 1

1.3 Video Port Driver Software

Video Port Communication

Figure 4. RAW Frame Diagram

The video port mini-driver is software provided by TI which allows the use of the video port from relatively
simple APIs (application programming interfaces). The functions of the APIs allow the developer to quickly
implement a video port configuration, taking what could be hundreds of individual register writes and
turning them into just a few simple API calls. The mini-driver operates by configuring the EDMA to handle
the transfer of frames from the video port into memory, as well as applying a register configuration to the
video port. This means that the driver itself incurs minimal CPU overhead while it is running. The only
CPU overhead comes from the calls made by the application software to allow it to swap frame buffers
between what the application sees and what the driver is capturing or displaying. Figure 5 gives a visual
overview of the video port driver functionality. For additional details on the video port mini-driver, please
see The TMS320DM642 Video Port Mini-Driver (SPRA918).

6 TMS320DM64x Video Port to Video Port Communication SPRAAF3–November 2006
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spra918
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF3

www.ti.com

Memory EDMA

Video
port

Video
decoder

Capture
sequence

Video
port

Video
decoder

Display
sequence

Video port physical layer

EDMA
ISR

Video port
ISR

Driver
buffers

Video port mini-driver

User
buffers

User
code

User application code

2 Video Port to Video Port Communication

2.1 Applications of Video Port to Video Port Communication

Video Port to Video Port Communication

Figure 5. Video Port Block Diagram

This section covers the usage of a video port to communicate with another video port. While the video port
is typically connected to a video encoder or decoder, this section discusses sending arbitrary data in place
of the typical video data the peripheral was originally designed to handle. This section also covers
possible uses for this concept, as well as the performance one can expect to find. Additional information
on the topic, including hardware and software examples, can be found in the appendices.

There are a number of applications that can benefit from this type of communication. In general, any
application dealing with large volumes of streaming data can utilize this interface. This leaves other, more
traditional interfaces such as the HPI (host port interface), EMIF (external memory interface), or EMAC
(Ethernet MAC) free to add additional differentiation in the end product. Because the DM642 supports
video streams with high bandwidth, the same interface can be used to provide a high-speed interface for
other data.

For example, one can use video port to video port (VP-VP) communication between devices in a video
transcoder. Here, a single device can be used to decompress an incoming video stream, sending it to
multiple devices that can compress the video stream in other formats. Figure 6 shows a block diagram of
such a system allowing for a single format to be converted into three different formats.

SPRAAF3–November 2006 TMS320DM64x Video Port to Video Port Communication 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF3

www.ti.com

DM642

DM642

DM642

DM642
Video port

Video port

Video port
Decompression

10/100
EMAC

10/100
EMAC

10/100
EMAC

10/100
EMAC

Processing and compression

DM642

DM642

DM642

DM642

Pre-processing
and color

space conversion

Compression

Source

YCbCr

YCbCr

DM642

RAW
data

RAW
data

Post-processing
(stitching of frames)

Disc
RAW
RGB

VP-VP connection

PCI/EMIF/EMAC

Tape

DVD

RAW
data

2.2 Utilizing a Video Transmit Stream for Data

Video Port to Video Port Communication

Figure 6. Video Transcoder

Another possible application would be a High Definition (HD) video compression system. Here, the video
ports can be used to send data between devices for processing, as the requirements for HD compression
typically take several DSPs. Figure 7 shows a block diagram of a theoretical HD compression system
utilizing multiple VP-VP links, including VP-VP links for the transfer of compressed data.

Figure 7. High Definition Compression System

The key to a fast and easy implementation of a data transfer over the video ports is to utilize the hardware
and software provided by TI as they are designed. What this means is to have the video port and the
video port mini-driver function as if they are transferring video data while having the arbitrary data
encapsulated in the video data at a higher level. This encapsulation concept is much like many networking
concepts where higher level protocols are embedded within lower level protocols. This allows the lower
level video port operations and hardware communication to be encapsulated by a much simpler higher
level communication protocol for arbitrary data transmission. Figure 8 shows a block diagram of basic
DSP to DSP communication by way of the video ports.

8 TMS320DM64x Video Port to Video Port Communication SPRAAF3–November 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF3

www.ti.com

Internal
memory

EDMA
Video
port

EMIF

External
memory

DM64x (transmit)

Video
port

Internal
memory

EDMA

EMIF

DM64x (receive)

Data
path

External
memory

Video Port to Video Port Communication

Figure 8. Video Port to Video Port Block Diagram

Video data is designed to be sent in frames, providing a time-based division of data that also can be used
effectively for the purpose of transmitting arbitrary data. This allows each frame to be used as a packet of
data where the arbitrary data and any required header information can be placed. The video port
mini-driver allocates buffers to hold these frames. Because of the buffers, the driver can fill (capture) or
transmit (display) a frame, and the application programmer can simultaneously access a different frame.
This buffer scheme enables the transfer of frames containing arbitrary data with a simple video port
configuration by the transmitting device. Once one can successfully transfer a frame, the arbitrary data
and header information can be added to the frame for data transmission. The concept is similar for the
receiving side, where the driver is used to collect frames. The application software must check each
received frame and interpret any header information to know how to handle the data. An example
implementation of this concept is given in Appendix A.

The header information passed through the video port can be application specific. In most cases, including
the example given in Appendix A, a minimum of two words of data are required for each block of data to
be sent or received. In particular, a destination address and length will allow the receiver to easily parse
the data and place it at the proper destinations in the receiver’s memory. A length of 0 can be used to
inform the receiver that there are no more valid blocks of arbitrary data contained in a particular frame. In
addition to these two pieces of information per block, there is also a key value per frame that is used to
define whether a frame contains valid data. The key can be any value, as long as both the sender and
receiver agree on the value. This key value allows a frame to be quickly ignored if there are no valid
blocks of data contained within the frame. With these header constructs, one can send several blocks of
data in a single frame that the video ports will treat as a video frame. Figure 9 shows the basic
packetization scheme used for this application report.

SPRAAF3–November 2006 TMS320DM64x Video Port to Video Port Communication 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF3

www.ti.com

Block

Block

Block

Block

Remainder
of frame

(blank data)

Key value

Length

Destination

Data

Length

Destination

Data

Length of 0

Video frame Header information

2.3 Performance Considerations

3 Conclusion

Conclusion

Figure 9. Basic Packetization Scheme for a Frame

Because the video port is such a high-speed parallel interface, it can achieve a fairly high bandwidth. The
theoretical maximum bandwidth of a video port is about 1.6 Gbps, which comes from the 20-bit bus
running at 80 MHz. However, a more typical maximum bandwidth, as used in the example code, is the
1.28 Gbps available when a 16-bit bus is used. The advantage of using the 16-bit bus is that the buffers
and the EDMA transfers end up much cleaner due to how the video port FIFOs function. Using a 20-bit
bus requires additional CPU overhead to sort the data. There is a RAW mode discussion on this in the
TMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide (SPRU629).

There are two primary limitations which would prevent achieving the full bandwidth of the interface. The
first limitation is the header information that needs to be sent with the data such that the receiver can
interpret it properly. This overhead is minimal for large blocks of data, but increases as the size of the
blocks that need to be transferred decreases. For example, if you have two words of header information
per block, as is the case with the example provided, and you are sending only blocks of one word each,
you will cut your bandwidth to one third of the maximum. On the other hand, if you were to send one block
that is very close to the size of the frame, the ratio of header information to actual data becomes much
smaller, bringing the bandwidth very close to the maximum.

The second limitation is that when transferring these large amounts of data within the DSP, these data
take up a significant amount of the EDMA bandwidth, and also the EMIF bandwidth if the buffers are in
external memory. Every video port you have active brings in or moves out large amounts of data, up to 1.6
Gbps. The EDMA is typically able to handle such high-speed transfers; however, it will not take many of
them before the overhead is too great and data is lost, particularly if external SDRAM is used. The more
individual blocks there are in the frame, the more time the CPU will have to spend parsing the header
information to copy the data blocks to their final destinations, adding to the bandwidth. Because of the
increased EDMA bandwidth, the example in the above paragraph applies here, too. If you have many
small blocks of data, you will require many small CPU-initiated transfers to handle them, adding additional
overhead, whereas a single large block in a frame would be handled by the CPU very efficiently via the
EDMA.

This application report explains the basic interface for using the RAW and BT.656 modes between video
ports. With this concept, the application programmer can easily interface multiple processors and create a
high-speed, glueless parallel bus to communicate between DSPs, allowing more traditional interfaces to
be used for product differentiation. This interface is ideal for applications which require a high-bandwidth,
streaming data interface.

TMS320DM64x Video Port to Video Port Communication10 SPRAAF3–November 2006
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru629
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF3

www.ti.com

4 References

References

1. TMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide (SPRU629)
2. The TMS320DM642 Video Port Mini-Driver (SPRA918)

SPRAAF3–November 2006 TMS320DM64x Video Port to Video Port Communication 11
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spru629
http://www-s.ti.com/sc/techlit/spra918
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF3

www.ti.com

Appendix A Video Port to Video Port Software

A.1 VPVP_Xmit () Function

Appendix A

The demonstration software configures the transmitter and receiver video ports to communicate
with each other using a RAW or BT.656 configuration.

Since the video port works with continuous streams of data, the simplest way of communicating is
to design the transfers to function on top of the existing video port mini-driver software. Following
this, we have created two functions:

• VPVP_Xmit() takes pointers to data and creates a data structure with header information. The
data and header information are placed inside the transmitter’s frame buffer.

• VPVP_Recv() is a function that is run every time a new frame is received. It checks the frame
buffer for the header created by VPVP_Xmit() and copies data out accordingly.

These functions are described in Section A.1 and Section A.2. A description of the header format is
given in Table A-1.

Table A-1. Video Port to Video Port Software Header Format

Word Purpose

Key value This key value tells the receiving code that the frame contains valid data.

Length1 The length in bytes tells the receiver how much data is valid.

Destination1 The destination address tells the receiver where the data should be placed.

Data1 The payload to be transmitted to the receiver.

Length2 The second length value for the second data block in the frame.

Destination2 The second destination value for the second data block in the frame.

Data2 The second payload of data.

... Additional data blocks.

Lengthn The final length value needs to be 0 to indicate the end of valid data in the frame.

Description: This function takes pointers to the data to be transmitted and prepares a display frame
buffer of data for transmission using the structure described in Table A-1.

Function: int VPVP_Xmit (FVID_Frame *FVID_DisplayBuffer,
char msgs[][],
int *msg_dests,
short *msg_lengths,
int msg_count);

Arguments: FVID_DisplayBuffer The video mini-driver display buffer. The VPVP_Xmit() function
fills the current display buffer using the structure documented in
Table A-1.

msgs The input 2D array containing each of the data packets that are
to be packed into the current display buffer.

12 TMS320DM64x Video Port to Video Port Communication SPRAAF3–November 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF3

www.ti.com

A.2 VPVP_Recv () Function

VPVP_Recv () Function

msg_dests An array of the destination addresses to which the data packets
are to be copied within the receiver’s memory map.

msg_lengths An array of length values containing the length (in bytes) of each
message to be transmitted.

msg_count The number of data packets to be transmitted. It should equal the
length of the msg_dests and msg_lengths array arguments.

Return Value: The number of messages that the VPVP_Xmit() function was able to pack into the
FVID_DisplayBuffer.

If the return value equals msg_count, then the VPVP_Xmit() function was successful.

If the return value is less than msg_count, then not all of the messages were able to fit
in a single FVID_DisplayBuffer. The remaining messages will need to be transmitted
with the next FVID_DisplayBuffer.

Example FVID_create();
Pseudo-Code FVID_control();
TSK Function: FVID_alloc();

while(1)
{

If(Data_Ready_To_Send)
{

VPVP_Xmit();
FVID_exchange();

}
else

{
Set 32-bit key value to 0.
FVID_exchange();

}
}

Description: This function checks the currently received frame for the key value and extracts the
data based on the header information if a valid frame is found.

Function: int VPVP_Recv(FVID_Frame *FVID_CaptureBuffer,
char msgs[][],
int *msg_dests,
short *msg_lengths);

Arguments: FVID_CaptureBuffer The video port mini-driver buffer that just received data. The
VPVP_Recv() function parses this buffer to see if there is valid
data inside.

msgs A 2D array that is to be filled with each of the messages received
inside the capture buffer.

SPRAAF3–November 2006 TMS320DM64x Video Port to Video Port Communication 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF3

www.ti.com

VPVP_Recv () Function

msg_dests An array of pointers to each of the messages received.

msg_lengths An array of message lengths corresponding to the length (in
bytes) of each message received.

Return Value: The number of messages received in the FVID_CaptureBuffer.

If the return value is 0, then the key value was not present at the start of the capture
buffer, and the data inside the buffer can be ignored.

If the return value is greater than 0, then it corresponds to the number of messages
received.

If the return value is negative, then an error has occurred.

Example FVID_create();
Pseudo-Code FVID_control();
TSK Function: FVID_alloc();

while(1)
{

FVID_exchange();
msg_count = VPVP_Recv();
If(msg_count) Process(msg_count);

}

TMS320DM64x Video Port to Video Port Communication14 SPRAAF3–November 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF3

www.ti.com

Appendix B Video Port to Video Port Hardware

JP3

VCC

VP1CTL2

JP2

VCC

VP1CTL1

JP1

VCC

VP1CTL0

VP2CTL2 VP2CTL1 VP2CTL0

Buffer/driver
OE

24

24

Buffer/driver
OE

80 MHz
Oscillator

JP4

24

Video port 2
daughter card connector

24

VP2CLK0

Video port 1
daughter card connector

STCLK
(27 MHz)

Display_EN

Capture_EN

24

SW1

Test
connector

Ribbon
cable

connector

SW2

Appendix B

The DM642EVM daughter card allows for communication between video port 2 and video port 1 on
the board or to another DM642EVM with daughter card by way of a ribbon cable. There are three
categories of settings on the board: video port control lines setting, made with jumpers JP1, JP2,
and JP3; clock frequency setting, made with jumper JP4; and data flow setting, made with dip
switches SW1 and SW2. A block diagram of the daughter card is shown in Figure B-1, and
descriptions of the setting options are given in Table B-1.

Figure B-1. Daughter Card Block Diagram

Table B-1. Daughter Card Jumper/Switch Control Lines

Setting Category Jumper/Switch Description

Video port control lines JP1 Allows the Video Port 1 Control 0 line to be pulled high for BT.656 mode
or connected to the Video Port 2 Control 0 line for RAW mode.

JP2 Allows the Video Port 1 Control 1 line to be pulled high for BT.656 mode
or connected to the Video Port 2 Control 1 line for RAW mode.

JP3 Allows the Video Port 1 Control 2 line to be pulled high for BT.656 mode
or connected to the Video Port 2 Control 2 line for RAW mode.

Clock frequency JP4 Allows the Video Port 2 Clock 0 line to be driven either by the
DM642EVM on-board 27-MHz STCLK signal, or from the on-daughter
board oscillator at 80MHz.

Data flow SW1 Enables the Video Port 1 signals with the buffer.

SW2 Enables the Video Port 2 signals with the buffer.

SPRAAF3–November 2006 TMS320DM64x Video Port to Video Port Communication 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF3

www.ti.com

Appendix C Video Port to Video Port Examples

C.1 BT.656 Example for Video Transmission

C.2 RAW Example for Text Messaging

Appendix C

The first example included with this application report uses the DM642EVM daughter cards to
connect two DM642EVMs via a video port bus in 8-bit BT.656 mode. The second example uses the
DM642EVM daughter cards to connect two DM642EVMs via a video port bus in 16-bit RAW mode.

In this example, the transmit DM642EVM uses video port 0 to capture the incoming video with the
on-board video decoder. It then displays this video using video port 2 configured in 8-bit BT.656 mode.
Video port 2 is connected to the daughter card for transmission of the video frames to the receiving
DM642EVM.

The receive DM642EVM uses video port 1 to receive the incoming video from the daughter card, and then
displays this video using its video port 2 connection to the on-board video encoder.

Fundamentally, this example creates a video pass-through using two DM642 processors.

To run the BT.656 example for video transmission, the following steps should be performed in the order
listed here:

1. Set up the DM642EVM daughter cards according to Table C-1 for the transmit and receive boards.
2. Use the Code Composer Studio™ integrated development environment (IDE) to load the

VPVP_BT656_CAPTURE_XMIT.out program onto the transmit DM642 processor. This will configure
the transmit DM642 processor to begin capturing video from a camera and displaying it across the
daughter card interface.

3. Use the Code Composer Studio IDE to load the VPVP_BT656_RECV_DISPLAY.out program onto the
receive DM642 processor. This configures the receive DM642 processor to begin receiving incoming
video from the daughter card, and to begin displaying the video via the NTSC display output of the
DM642EVM.

Table C-1. BT.656 Example Project Daughter Board Settings

Jumper/Switch Setting for BT.656 Transmitter Setting for BT.656 Receiver

JP1 VCC Vcc

JP2 VCC Vcc

JP3 VCC VCC

JP4 27 MHz Disconnected / Open

SW1 OFF ON

SW2 ON OFF

In this example, the transmit DM642EVM uses a UART to collect messages typed into a terminal window.
It prompts the user for the number of messages to transmit. When the user hits the Enter key on the final
message for transmission, the VPVP_Xmit() function uses the captured UART messages to create a video
buffer containing RAW data for display with video port 2 connected to the daughter card.

The receive DM642EVM uses video port 1 to receive the incoming messages from the daughter card. It
uses the VPVP_Recv() function to check whether valid data has been received. When valid data has been
received, the receive DM642 processor prints the messages received to a terminal window via the UART
connection.

Fundamentally, this example demonstrates the ability to transmit non-video asynchronous data between
two DM642 processors using the video port configured in 16-bit RAW mode.

16 TMS320DM64x Video Port to Video Port Communication SPRAAF3–November 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF3

www.ti.com

RAW Example for Text Messaging

To run the RAW example for Text Messaging, follow these steps in the order given:

1. Set up the DM642EVM daughter cards according to Table C-2 for the transmit and receive boards.
2. Make the RS232 UART connection from the transmit DM642EVM to the transmit PC COM port.
3. Make the RS232 UART connection from the receive DM642EVM to the receive PC COM port.
4. Start the terminal program on both the transmit and receive PCs with the following settings:

• Baud Rate = 115,200 bps
• Data Bits = 8 bits per word
• Stop Bits = 1 stop bit
• Parity = No
• Hardware Flow Control = None

5. Use Code Composer Studio to load the VPVP_RAW_MESSENGER_XMIT.out program onto the
transmit DM642 processor. This configures the transmit DM642 to begin communicating with the
transmit PC terminal program via the RS232 UART connection.

6. Use Code Composer Studio to load the VPVP_RAW_MESSENGER_RECV.out program onto the
receive DM642 processor. This configures the receive DM642 processor to begin receiving text
messages from the transmit board via the daughter card, and begins printing these messages to the
terminal window on the receive PC.

Note: Both transmit and receive programs wait for user input into the terminal program before
transmission occurs across the VP-VP interface.

Table C-2. RAW Example Project Daughter Board Settings

Jumper/Switch Setting for RAW Transmitter Setting for RAW Receiver

JP1 Vcc VP2CTL0

JP2 Vcc Vcc

JP3 Vcc Vcc

JP4 80 MHz Disconnected / Open

SW1 OFF ON

SW2 ON OFF

SPRAAF3–November 2006 TMS320DM64x Video Port to Video Port Communication 17
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF3

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2006, Texas Instruments Incorporated

	1 Video Port Communication
	1.1 Video Port Hardware Architecture
	1.2 Video Port Modes
	1.2.1 BT.656
	1.2.2 RAW Mode

	1.3 Video Port Driver Software

	2 Video Port to Video Port Communication
	2.1 Applications of Video Port to Video Port Communication
	2.2 Utilizing a Video Transmit Stream for Data
	2.3 Performance Considerations

	3 Conclusion
	4 References
	Appendix A Video Port to Video Port Software
	A.1 VPVP_Xmit () Function
	A.2 VPVP_Recv () Function

	Appendix B Video Port to Video Port Hardware
	Appendix C Video Port to Video Port Examples
	C.1 BT.656 Example for Video Transmission
	C.2 RAW Example for Text Messaging

