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Audio playback requires long battery life in handheld applications like portable audio players. To achieve
low power and die area, the number of gates needs to be reduced. An audio coprocessor can help in
achieving low power and die area. The audio coprocessor/accelerator needs to be programmable to
address multiple codec standards (new and existing), and numerous pre- and post-processing algorithms.
This paper describes assembly programming techniques of an audio coprocessor for the MP3 decoder for
better utilization of hardware and the optimization of cycles and memory.
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Embedded programs are developed using high level languages like C to leverage code maintainability,
portability, and readability. Program development time is lower for C programs compared to assembly
programming because of the availability of development tools like a cross-compiler, linker, and source
level debugger.

Embedded programs often use assembly programming for optimizing cycles and memory. In addition,
assembly programming is useful to have better control over hardware in the case of device drivers. This
paper provides a study of the use of assembly programming for developing audio codecs in an audio
processor. In addition, the firmware development cycle of the MP3 decoder development is presented.
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2 Hardware Overview
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The functional block diagram of the audio core is shown in Figure 1. The audio core is composed of two
autonomous processing units: the Bit Processing Unit (BPU), and the Arithmetic Unit (AU) and I/O
peripherals. The BPU and AU interface through shared memory. The BPU is essentially a control
processor with special instructions and hardware for bitstream parsing [1]. The AU is a programmable
fixed-point computation engine for performing DSP operations like Discrete Cosine Transform (DCT) and
filters. Core and I/O peripheral synchronization are carried out by the BPU (master). The audio core can
be used as a coprocessor for audio codecs and effects like an equalizer. The programmable hardware
resources are memory (RAM and ROM), Direct Memory Access (DMA), IO ports, and interrupts.

Figure 1. Audio Processor Block Diagram

The audio core is a slave requiring a master (host) for initialization. The master could be a general
purpose processor like ARM. While holding the audio core in reset (halting processor execution), host
loads programs of BPU and/or AU (flow 0). BPU can load programs onto AU. For reducing program
memory size, memory overlay can be used [4]. That is, only the program needed for audio processing, for
a given input stream, is loaded onto the audio core memory. The program/data memory is loaded
dynamically based on need. Though dynamically loaded, the dynamic loading is per stream
decode/encode. Specifically, program/data is not dynamically loaded for each frame in the stream.

Consider Figure 1 with respect to MP3 decoder. Host shall fetch the streams for decode onto external
memory, which can be Synchronous Dynamic RAM (SDRAM) from hard-disk or flash memory. Host would
inform the data start, and size parameters to audio core via Control Input Port (CIP). BPU can program
Data Input Port (DIP) DMA to fetch the streams onto internal memory of audio core (flow 1). BPU unpacks
the bitstream and decodes variable length (Huffman decode) encoded information. BPU writes the control
information extracted from bitstream and Huffman decoded frequency samples into shared memory (flow
2). BPU gives control to AU for generation of Pulse Code Modulation (PCM) samples from frequency
samples. AU performs de-quantization, joint-stereo, anti-alias butterfly, Inverse Modified Discrete Cosine
Transform (IMDCT), overlap-add, frequency inversion and synthesis [3]. The synthesized PCM samples
are written into shared memory (flow 3). Once the PCM samples are available in shared memory, AU
gives control to BPU for streaming the samples to Digital to Analog Converter (DAC) via PCM port (flow
4).

Programming of Audio Coprocessor for MP3 Decoder2 SPRAAJ7–July 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAJ7


3 Firmware Development
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3.1.1 Requirement Analysis

3.1.2 Architectural Design
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The waterfall development life cycle, shown in Figure 2, is followed in MP3 decoder development [6].

Figure 2. Development Life Cycle

Functional requirements are specified by the ISO/IEC 11172-3 standard [6]. Performance requirements
like cycles, memory, streaming, and host interfaces are specified based on target application. Implicit
requirements cover aspects like maintainability, and code readability. The requirements stated explicitly
and implicitly are fed as input for test case development.

The top level design involves designing interfaces between BPU, AU and IO peripherals. Also, top-level
design needs to take care of real time streaming and buffering. The interfaces for interaction with host are
defined here as well. Architectural design could be viewed as system or subsystem design with details to
timing, streaming (buffering) and interfacing. Major modules are defined during architectural design.
Architectural design provides inputs for preparing test cases and procedures for testing interfaces.
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This step involves the design of modules and sub-modules like parser, and Huffman decoder. Module
interfaces are defined for integration of all modules into a codec. The design representations could be
pseudo-code, flow chart, state diagrams, etc. for individual modules. The design inputs are used for
defining unit test cases and procedures.

The detailed design of modules and system are translated to assembly language programs. The
translated code sections are unit tested for functionality, interface, memory usage, cycles profiling,
parameter range, and memory overwrites. Code is reviewed for correctness of implementation, comments,
efficiency/optimization, and conformance to coding guidelines.

The best way to develop assembly program is to modularize. Modular programs are easy to implement,
test, debug, and maintain. System is subdivided into subsystems, which are refined further into modules
based on functionality and hardware partitions as shown in Figure 3. Module A is sub-divided into modules
1, 2, 3 and 4. The module size has to be optimal while partitioning code based on functionality, to avoid
call overhead. Every module shall have singly entry and single exit following structured programming.

Figure 3. Structured Program

Well commented code along with design documentation is easy to maintain. Coding style and indentation
is critical for readability of assembly programs.

The BPU modules are integrated to form BPU subsystem. The subsystem is tested for correctness of
bitstream decode and Huffman decode. Lossless decoding modules are tested for bit exactness using
reference decoder. The interface conformance of BPU subsystem is tested. BPU cycles and memory
usage are benchmarked. Similarly, AU modules are integrated and tested. The BPU and AU systems are
integrated. The integrated decoder is tested. Finally, the audio core program is integrated with host
program and tested.
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The system is tested for requirements, stability, error handling, long duration operation, interface and
performance bench marking. The test platform consists of ModelSim simulator executing audio decoder
on audio core and a reference decoder running on workstation, shown in Figure 4. The output of reference
decoder and audio core are compared for Root Mean Square (RMS) error and ISO/IEC 11172-3
compliance [8].

Figure 4. Test System Setup

RAM occupies relatively larger area of the die compared to ROM. So ROM is preferable over RAM [4].
Overall, the memory (ROM and RAM) has to be minimal to reduce die area. Assembly programming
provides better control over memory and instructions. Thus program and data memory footprint is
optimized by hand assembly. Trade-off can be made for speed versus memory size for some cases.

ROM is used for constant data and stable programs. Data is multiplexed within a word to achieve memory
optimization. ROM is shared across modules when feasible.

Data RAM is optimized by packing multiple variables into single memory location. For example, an array
of four elements with element size of 4 bits data can be packed into a single 16-bit memory location. The
data element is unpacked, when needed. This pack/unpack operations consumes extra cycles during
program execution.

Data RAM is optimized by sharing memory locations across modules. At any point in time, only one
module will be accessing the shared memory. This typically requires that the modules be at same call
depth level and have mutually exclusive operation. By this method, statically allocated memory can be
made to behave like dynamically allocated memory without the consequences of memory fragmentation
and leak. Resource sharing mechanisms like semaphores from Real Time Operating System (RTOS) are
not needed, since programs on audio core are single-threaded [7]. Care should be taken to avoid sharing
memory across modules and interrupt service routine (ISR).

Program memory is optimized by the use of modules. MACROS for code repetition are used instead of
function calls to optimize call overhead. MACROS need to be small size modules.

Stack: Audio core does not have hardware defined stack. Simplest way to create stack without degrading
performance for single-threaded applications is to have stack memory defined per module. On entering a
function, the registers are saved into the module stack memory. On exiting the module, the register
contents are restored with context saved in stack memory. Stack memory can be used for local variables
inside the module. Stack memory is shared across modules just like the heap memory previously
discussed. The program shall maintain independent stack for caller and callee modules, irrespective of
direct caller/callee relationship.

Figure 5 illustrates data memory sharing and stack memory sharing across various modules. The depth of
function call tree is three and three stack memory regions are used for managing stack operations. The
functions A and B are at same depth (depth1) and so the stack memory of A can be shared with B. The
maximum stack size required by A or B should be used for allocating stack memory. Similarly, the sub
modules of A and B share the same stack memory as they are at same depth (depth2). Specifically, the
memory is released by module A to module B for usage, when module A has finished accessing memory.
The modules C and D share the same stack area as they are at same depth (depth3).
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Figure 5. Memory Sharing and Stack Layout

The code snippet below shows the simulation of stack in module A.
! Code snippet for saving r1, r2, r3 registers of function A
!

st(r1, mem(Stack1_r1_save)) !r1 save
st(r2, mem(Stack1_r2_save)) !r2 save
st(r3, mem(Stack1_r3_save)) !r3 save
...
...
! Restore r1, r2, r3
ld (mem(Stack1_r1_save), r0)
ldpar (mem(Stack1_r2_save), r0) ld (r0, r1) !restore r1
ldpar (mem(Stack1_r3_save), r0) ld (r0, r2) !restore r2
ld (r0, r3) !restore r3
...
...
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Interrupts are used to reduce the overhead of software polling. On completion of an activity by hardware
resources like DMA transfer completion, interrupt request (IRQ) is registered. ISR associated with the IRQ
is invoked by the BPU. Keep the ISR execution time minimal by clearing interrupt and storing the event in
order to meet real-time constraints. The event can be checked in program. Avoid using loops and polling
in the ISR. In case of PCM output (I2S DMA) interrupt, the output buffer for streaming is loaded onto DMA
in the ISR [2].

Consider the case of byte aligned sync search operation in MP3 decoder. When sync word is not found till
the buffer end, an interrupt is triggered. In ISR, the buffer has to have new data to resume the sync search
operation, as entire data in the buffer is parsed or consumed by sync search operation. Since the
hardware does not allow nested interrupts and unavailability of RTOS, triggering the DMA source for refill
and checking for DMA completion is not possible. To handle this case, unconventional branch (extension
module) is used, instead of normal return from ISR. Before taking the branch to ISR extension module,
context of sync search routine and ISR return address are saved in reserved memory (not shared with
other modules) and DMA transfer is initiated to refill the buffer. After the refill is over, ISR is invoked and
ISR sets an event for the extension module and returns normally. The extension module comes out of the
event polling and restores the sync search context from reserved memory and returns back to the interrupt
return address of sync search operation.

Cycles can be optimized by usage of instruction parallelism, apart from algorithm optimization and coding
efficiency. Pipelined architecture reduces cycle time of a processor and hence increases instruction
throughput. For instance, n-stage pipeline would take (n+k-1) cycles for executing k instructions.
Instructions in delay slots of branch instructions are executed irrespective of whether branch is taken or
not. The number of delay slots depends on the pipeline stages. For n-stage pipe line, (n-1) delay slots are
available. Programs have to make good use of delay slots for optimization of cycles.

The code snippet below is for a two stage pipeline, as in BPU, which does a memory read and ALU
operation in one clock cycle.

ldpar (mem (my_memory_location), r0) add (r1, r2)

Table look up and pre-computed tables are used to optimize cycles consumption. Fixed-point arithmetic is
used to perform DSP intensive operations on ALU [5].

Code partitioning between BPU and AU is essential to balance load while keeping BPU and AU interaction
to minimum. BPU and AU cores can go into IDLE mode independently to save power.

The illustrated programming techniques aid in realizing stack memory and interrupt handling to develop
modular programs with limited support from processor. The cycle and memory optimization is achieved by
use of assembly language programming of the audio coprocessor. Assembly language programming
allowed for better utilization of hardware resources and instruction level parallelism provided by the audio
coprocessor.

The authors thank Mike Polley, Architecture Team, TI for sharing his thoughts on the core architecture.
Authors value the contributions of Mohamed Mansour, R&D, TI towards algorithm and software.
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