
Application Report
SPRAAM6–June 2007

Video Background/Foreground Detection Implementation
on TMS320C64/64x+ DSP

Cheng Peng, Ph.D..

ABSTRACT

Four existing methods of background/foreground (B/F) detection are implemented on
the TMS320C64/64x+ DSP in this application report.

Contents
1 Introduction ... 2
2 Background/Foreground Detection... 3
3 Experiments and Results .. 12
4 Conclusion .. 13
5 References... 14

List of Figures

1 Video Content Analysis Block Diagram.. 2
2 B/F Detection Based on Two Frames.. 4
3 Examples of B/F Detection Based on Two Frames .. 4
4 B/F Detection Based on Three Frames.. 6
5 Examples of B/F Detection Based on Three Frames .. 6
6 Adaptive B/F Detection .. 7
7 Examples of Adaptive B/F Detection... 8
8 Pixel Process Following Gaussian Distribution ... 9
9 A Statistical B/F Detection Based on the Gaussian Model 10
10 The Results of Non-Adaptive B/F Detections ... 12
11 The Results of Adaptive B/F Detections ... 12
12 The Result of Statistical B/F Detection Based on Gaussian Model 13

List of Tables

1 Application Scenarios of Different B/F Detection Methods 13
2 C64/C64x+ DSP Cycle Consumption for Various Algorithms 13

SPRAAM6–June 2007 Video Background/Foreground Detection Implementation on TMS320C64/64x+ DSP 1
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAM6

www.ti.com

1 Introduction

Foreground/Background
Detection

Video Object
Segmentation

Video Object
Tracking

Video Object
Feature Extraction

Video Object
Classification

Video Background
Model

Video Background
Updating

Video Scene/Shot
Detection

Video Sequence

Alert Management
System

Introduction

Intelligent video content analysis (VCA) is getting more and more attention lately and many analog video
surveillance systems are being replaced by digital solutions. The security industry has shown great
interest in various VCA features such as classification, motion detection, and object tracking. These
applications are helping to save human resources and significantly reduce false alarms.

Many VCA applications are expected to be ported from PC to DSP as real-time embedded solutions. The
TI high performance TMS320C64/64x+ DSP family with VLIW architecture is very good at video
processing, including VCA. B/F detection is a key signal processing module of a VCA application and
requires very intensive pixel-wise computation. It is one of the important kernels that require thorough
optimization for VCA implementations. A rich set of C64/C64x+ DSP devices offered by TI provides a wide
variety of choice to VCA applications.

VCA was born out of the computer vision and pattern recognition (CVPR) area. This is an ongoing
research area with no international standard currently available in this area. Therefore, it is a perfect
application for TI DSP to focus on. Several VCA terms need to be clarified before moving on to algorithms
details.

• Video object – An object captured in a sequence of video frames.
• Video scene/shot – A video sequence is composed of video scenes/shots. A video scene/shot is a

group of continuous video frames with a stable background and a roughly fixed number of video
objects.

• Feature of a video object – Spatial features (height-width-ratio, histogram, texture, shape) and
temporal features (motion vector, speed, variation of object shape).

Usually, a surveillance camera monitors an area or several areas 24 hours a day. A VCA engine
processes the captured video frames constantly and generates an alert when a security event happens. A
general VCA algorithm flow is shown in Figure 1.

Figure 1. Video Content Analysis Block Diagram

2 Video Background/Foreground Detection Implementation on TMS320C64/64x+ DSP SPRAAM6–June 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAM6

www.ti.com

2 Background/Foreground Detection

Background/Foreground Detection

When a new video frame is captured, it goes through a series of algorithm processing modules within a
VCA engine.

• First, a video scene/shot detection algorithm decides if the current video frame belongs to an existing
video scene/shot based on the frame histogram or the camera movement feedback.

• Second, a foreground/background detection module decides that every pixel in the current video frame
belongs to the foreground or background based on a background model.

• Third, the B/F mask is morphologically dilated and grouped into a set of video objects with a bounding
box. The location and speed of every video object is the foundation for the following object tracking.
Kalman filtering is a well-known object tracking method.

A basic object classifier may only require height-width-ratio and speed as an object feature vector. A
complicated object classifier usually depends on principle content analysis (PCA) or linear discriminate
analysis (LDA) for a performance enhancement. All these video object features (height-weight-ratio,
location and speed) are sent to the alert management module. Some of these algorithm modules are
pixel-wise, the others operate at object level. Compared with the object-level algorithm modules,
pixel-wise algorithm modules are a lot more intensive computationally because of high-pixel clock rate.
B/F detection is one of the pixel-wise algorithm modules in VCA. It usually requires a thorough
optimization in a VCA implementation. B/F detection is used as an example to show how to optimize a
VCA algorithm on a C64/C64x+ DSP. This helps many VCA applications migrate to efficient DSP-based
real-time implementations from expensive PC-based solutions.

B/F detection plays a very important role in a video content analysis system. It is a foundation for various
post-processing modules such as object tracking, recognition, and counting. Many approaches are
proposed on this topic based on the background module and procedure used to maintain the model. In the
past, the computational power of the processor limited the complexity of B/F detection implementation.
This lead to a dilemma, some complicated implementations were too slow to catch up real-time
requirements; the other basic implementations required a very controlled environment. Recently, faster
computers and DSPs allow researchers to design a complicated B/F detection algorithm and meet
real-time requirements. A real-world B/F detection should be robust and adaptive to different light
conditions in a noisy environment.

There are two types of B/F detection methods: non-adaptive and adaptive. Non-adaptive methods depend
on certain numbers of video frames and do not maintain a background model in the algorithm. Adaptive
methods usually maintain a background model and the parameters of the background model evolve over
time. Four well known B/F detection methods are introduced and implemented in this application report.
These methods are implemented in the American National Standards Institute (ANSI) C (PC-flavor).

• Non-adaptive methods

– B/F detection based on two frames
– B/F detection based on three frames

• Adaptive methods

– Adaptive B/F detection
– Statistical B/F detection based on Gaussian model

SPRAAM6–June 2007 Video Background/Foreground Detection Implementation on TMS320C64/64x+ DSP 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAM6

www.ti.com

2.1 Background/Foreground Detection Based on Two Frames

f i-1

f i

d i b i

| f fi i-1- | b Threshold (d , T)i i=

(a) Previous Frame (b) Current Frame (c) B/F Mask

Where Object Is Now

Where Object Will Be

Background/Foreground Detection

Two-frame-based B/F detection is the simplest non-adaptive method. First, a pixel-wise absolute
difference is calculated between the current frame and the previous frame. Second, the absolute
difference is compared with a given threshold value. If the absolute difference is greater than the threshold
value, the corresponding pixel belongs to the foreground. Otherwise, it belongs to the background. The
threshold value is chosen based on imager noise level and the complexity of the video sequence. Usually,
this basic method is used for simple motion detection, not object tracking/recognition because the
foreground objects can not be effectively extracted from the video sequence (See Figure 3). Sometimes, a
pixel may be misclassified as foreground because of noise contribution.

The algorithm of two-frame-based B/F detection is described below.

• fI : A pixel in a current frame, where I is the frame index.
• fI-1: A pixel in a previous frame (fI and fI-1 are located at the same location.)
• dI: Absolute difference of fI and fI-1.
• bI: B/F mask - 0: background. 0xff: foreground.
• T: Threshold value.

1. dI = |fI - fI-1|
2. If dI > T, fI belongs to the foreground; otherwise, it belongs to the background.

Figure 2. B/F Detection Based on Two Frames

Figure 3. Examples of B/F Detection Based on Two Frames

A ghost object (where the object originally was) is shown as a foreground in Figure 3C.

The algorithm kernel loop is shown below. This is what the PC-based implementation looks like in general.
for (I = 0; I < size; I++)
{

difference= abs(previousFrame[i]-currentFrame[i]);
if(difference>threshold) bfMask[i]=0xff;
else bfMask[i]=0;

}

4 Video Background/Foreground Detection Implementation on TMS320C64/64x+ DSP SPRAAM6–June 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAM6

www.ti.com

2.2 Background/Foreground Detection Based on Three Frames

Background/Foreground Detection

When this kernel loop is ported to the C64/C64x+ DSP, the code structure and data access pattern need
to be totally re-arranged in order to benefit the most from VLIW architecture and single-instruction, multiple
data (SIMD) instructions. The optimized kernel loop is shown below.

threshold=threshold | threshold<<8 | threshold <<16 | threshold<<24;
// pack four threshold values into a integer
#pragma UNROLL(2);
for(i=0;i<size;i+=8)
{
p0123=_lo(_memd8_const(¤tFrame[i]));
p4567=_hi(_memd8_const(¤tFrame[i]));
b0123=_lo(_memd8_const(&previousFrame[i]));
b4567=_hi(_memd8_const(&previousFrame[i]));
dif0123=_subabs4(p0123,b0123);
dif4567=_subabs4(p4567,b4567);
bit0123=_cmpgtu4(dif0123,threshold);
bit4567=_cmpgtu4(dif4567,threshold);
bitPos0123=_xpnd4(bit0123);
bitPos4567=_xpnd4(bit4567);
_memd8(&bfMask[i])=_itod(bitPos4567,bitPos0123);

}

In the optimized kernel loop, eight pixels are loaded to the dual registers first. It means that one register
contains four pixels. Absolute differences of four pairs of pixels are calculated by using the _subabs4
instruction. The results of every four pixels are compared with the threshold value by using the _cmpgtu4
instruction. The output B/F bit-masks are expended to a byte-mask by using the _xpnd4 instruction.

Three-frame-based B/F detection fixes the issue of ghost objects without increasing too much
computational cost. First, a pixel-wise absolute difference is calculated between the current frame and the
previous frame. Second, another pixel-wise absolute difference is calculated between the current and the
next frame. Third, both absolute differences are compared to the given threshold value. If both of them are
greater than the threshold value, the corresponding pixel belongs to the foreground. Otherwise, it belongs
to the background. Three-frame-based method also reduces false foreground pixels because of noise
contribution. This non-adaptive method can enable a short-term video object tracking/recognition in a
controlled environment.

The algorithm of three-frame-based B/F detection is described below.

• fi-1 : A pixel in a previous frame, where i is the frame index.
• fi : A pixel in a current frame
• fi+1 : A pixel in the next frame (fi , fi-1 , and fi+1 are located at the same location.)
• di: A pixel-wise absolute difference between fi and fi-1.
• di+1: A pixel-wise absolute difference between fi and fi+1.
• bi: B/F mask - 0: background. 0xff: foreground.
• T: Threshold

1. di = |fi - fi-1| and di+1 = |fi - fi+1|
2. If di > T & di+1 > T, fi belongs to the foreground; otherwise, it belongs to the background.

SPRAAM6–June 2007 Video Background/Foreground Detection Implementation on TMS320C64/64x+ DSP 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAM6

www.ti.com

f i-1

f i

di m i

| f fi i-1- | m Threshold (d , T)i i=

f i+1

di+1 mi+1

| f fi i+1- |

bi

m Threshold (d , T)i+1 i+1=

b m &i i= mi+1

Background/
Foreground Mask

(A) (B) (C)

Where Object Was

Where Object Is Now

Where Object Is Now

Where Object Will Be

Where Object Is Now

Background/Foreground Detection

Figure 4. B/F Detection Based on Three Frames

A The B/F mask based on the current frame and the previous frame.

B The B/F mask based on the current frame and the next frame.

C The output B/F mask based on three frames.

Figure 5. Examples of B/F Detection Based on Three Frames

The Algorithm kernel loop is shown below. This is what the PC-based implementation looks like in
general.

for (i = 0; i < size; i++)
{

difference= abs(previousFrame[i]-currentFrame[i]);
if(difference>threshold) bfFlag1=0xff;
else bfFlag1=0;
difference= abs(nextFrame[i]-currentFrame[i]);
if(difference>threshold) bfFlag2=0xff;
else bfFlag2=0;
bfMask[i]=bfFlag1 & bfFlag2;

}

The optimized kernel loop on C64/C64x+ DSP is shown below.
threshold=threshold | threshold<<8 | threshold <<16 | threshold<<24;
for (i = 0; i < size; i+=8)
{

p0123=_lo(_memd8_const(&previousFrame[i]));
p4567=_hi(_memd8_const(&previousFrame[i]));
c0123=_lo(_memd8_const(¤tFrame[i]));
c4567=_hi(_memd8_const(¤tFrame[i]));
n0123=_lo(_memd8_const(&nextFrame[i]));
n4567=_hi(_memd8_const(&nextFrame[i]));
pcDif0123=_subabs4(p0123,c0123);
pcDif4567=_subabs4(p4567,c4567);
cnDif0123=_subabs4(c0123,n0123);
cnDif4567=_subabs4(c4567,n4567);

6 Video Background/Foreground Detection Implementation on TMS320C64/64x+ DSP SPRAAM6–June 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAM6

www.ti.com

2.3 Adaptive Background/Foreground Detection

f i di bi

| f µi i- | b Threshold (d , T)i i=

µi

µ µi+1 i= (1 -) +a aƒi

Background/Foreground Detection

pcBit0123=_cmpgtu4(pcDif0123,threshold);
pcBit4567=_cmpgtu4(pcDif4567,threshold);
cnBit0123=_cmpgtu4(cnDif0123,threshold);
cnBit4567=_cmpgtu4(cnDif4567,threshold);
bitPos0123=pcBit0123 & cnBit0123;
bitPos4567=pcBit4567 & cnBit4567;
bitPos0123=_xpnd4(bitPos0123);
bitPos4567=_xpnd4(bitPos4567);
_memd8(&bfMask[i])=_itod(bitPos4567,bitPos0123);

}

Usually, the non-adaptive methods are useful only in high-supervised, short-term tracking applications
without significant changes in the video scene. When errors happen, it requires manual re-initialization.
Without re-initialization, errors in the background accumulate over time. Adaptive B/F detection is chosen
for more and more VCA applications because of the limitation of non-adaptive methods. A standard
adaptive B/F detection method maintains a background model within the system. Every new video frame
is slowly blended into the background at a given learning rate. For every pixel, the absolute difference
between the current frame and the background is calculated. If the result is greater than the given
threshold value, the corresponding pixel belongs to the foreground. Otherwise, the corresponding pixel
belongs to the background. This method is effective for many video surveillance scenarios where objects
move continuously and the background is visible a significant portion of the time.

The algorithm of adaptive B/F detection is described below.

• fi : A pixel in a current frame, where i is the frame index.
• µ : A pixel of the background model (fi and µ are located at the same location).
• di: Absolute difference between fi and µ.
• bi: B/F mask - 0: background. 0xff: foreground.
• T: Threshold
• α: Learning rate of the background.

1. di = |fi - µ|
2. If di > T , fi belongs to the foreground; otherwise, it belongs to the background.

Figure 6. Adaptive B/F Detection

The algorithm kernel loop is shown below. This is what the PC-based implementation looks like in general.
coefficient=255-learningRate;
for (i = 0; i < size; i++)

{
difference= abs(currentFrame[i]-background[i]);
if(difference>threshold)
bfMask[i]=0xff;
else
bfMask[i]=0;
weightSum = (background[i]*coefficient+currentFrame[i]*learningRate)>>8;
background[i]=weightSum;

}

SPRAAM6–June 2007 Video Background/Foreground Detection Implementation on TMS320C64/64x+ DSP 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAM6

www.ti.com

(A) A Captured Frame (B) A Background Model (C) An Output Background/
Foreground Mask

2.4 Statistical Background/Foreground Detection Based on Gaussian Model

()
2~ ,, , ,

P Ni k i k i k
m s

(1)

Background/Foreground Detection

The optimized kernel loop on C64/C64x+ DSP is shown below.
threshold=threshold | threshold<<8 | threshold <<16 | threshold<<24;
lr=learningRate | learningRate <<8 | learningRate<<16 | learningRate<<24;
clr=_sub4(constantFF,lr);
#pragma UNROLL(2);
for(i=0;i<size;i+=8)
{
p0123=_lo(_memd8_const(&frame[i]));
p4567=_hi(_memd8_const(&frame[i]));
b0123=_lo(_memd8_const(&background[i]));
b4567=_hi(_memd8_const(&background[i]));
dif0123=_subabs4(p0123,b0123);
dif4567=_subabs4(p4567,b4567);
bit0123=_cmpgtu4(dif0123,threshold);
bit4567=_cmpgtu4(dif4567,threshold);
bitPos0123=_xpnd4(bit0123);
bitPos4567=_xpnd4(bit4567);
part1a = _mpyu4(b0123,clr);
part1b = _mpyu4(p0123,lr);
part2a = _mpyu4(b4567,clr);
part2b = _mpyu4(p4567,lr);
term1=_packh4(_hi(part1a), _lo(part1a));
term2=_packh4(_hi(part1b), _lo(part1b));
term3=_packh4(_hi(part2a), _lo(part2a));
term4=_packh4(_hi(part2b), _lo(part2b));
backgroundNext0123=_saddu4(term1,term2);
backgroundNext4567=_saddu4(term3,term4);
_memd8(&background[i])=_itod(backgroundNext4567, backgroundNext0123);
_memd8(&bfMask[i])=_itod(bitPos4567,bitPos0123);
}

When the background is updated, every four pixels are processed together by using a set of SIMD
instructions. First, αfi and (1 - α)µi are calculated for every four pixels using the _mpyu4 instruction.
Second, the output terms are packed by using instruction _packh4. Third, the sum of αfi and (1 - α)µi is
derived by using the _sadu4 instruction for every four pixels. Finally, the background model stored in the
memory is updated. A captured video frame is shown in Figure 6A. The background is shown in
Figure 6B. The output B/F mask is shown in Figure 6C.

Figure 7. Examples of Adaptive B/F Detection

The most complicated B/F detection is based on a statistical background model. A background pixel in a
given video frame is modeled as a random variable that follows the Gaussian distribution [1].

Pi,k is a pixel-wise random variable and follows the Gaussian distribution. It is located at the kth position in
the ith video frame. µi,k and σi,k are corresponding mean and standard deviation parameters of the
Gaussian distribution.

8 Video Background/Foreground Detection Implementation on TMS320C64/64x+ DSP SPRAAM6–June 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAM6

www.ti.com

(){ }
2: ~ , ,0 , 0,1,2, , , .

P P N i M ki k i k i k i k
m s £ < = K

(2)

s
2
i,k

P
i,k

~ (N µi,k, si,k)
2

P
i,k

~ (N µi,k, si,k)
2

s
2
i,k

Background/Foreground Detection

Over time, a pixel is modeled as a time series called pixel process.

M is the size of the image.

A pixel-wise Gaussian distribution is totally determined by its mean and standard deviation. The statistical
property (mean and standard deviation) of a pixel process evolves over time based on live video data. For
example, the standard deviation of a pixel located at the lake is usually bigger than the pixel located at the
road (See Figure 7). The B/F detection based on this statistical background model can adapt to dynamic
light changing and environmental noise. A pixel in a new video frame, with a pixel value within x (=2.5 or
a given number) standard deviation of the corresponding Gaussian distribution, belongs to the
background. Otherwise, it belongs to the foreground. If a pixel belongs to the background, the
corresponding mean and standard deviation are updated at a given learning rate linearly.

Basically, a background can be seen as a collection of pixel-wise means per frame at a given time. Every
background pixel has its own threshold value derived from the corresponding standard deviation. This is
indeed a per-pixel/per-distribution thresholding method. It is very effective when different regions have
different lighting conditions or different noise levels. A uniform threshold may result in objects disappearing
when they enter a low-noise region.

Figure 8. Pixel Process Following Gaussian Distribution

The algorithm details are described below.

• fi : A pixel in a current frame, (the ith video frame).
• µi :Mean of a pixel-wise background Gaussian distribution. (fi and µi are located at the same location.)
• σi: Standard deviation of a pixel-wise background Gaussian distribution.
• di: Absolute difference between fi and µi.
• Ti: A pixel-wise threshold.
• α: Learning rate of the background.
• η: Threshold gain.

1. di = |fi - µi|
2. Ti = ησi

3. If di > T , fi belongs to the foreground; otherwise, it belongs to the background.
4. If fi belongs the background, update the pixel-wise mean and standard deviation of the corresponding

pixel distribution at a given learning rate: µi = (1 - α) µi + αfi and σi = (1 - α)σi + αdi.

The linear blending/interpolation method used to update pixel-wise background mean and standard
deviation is effective and affordable.

SPRAAM6–June 2007 Video Background/Foreground Detection Implementation on TMS320C64/64x+ DSP 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAM6

www.ti.com

f i

µi

di b i

b Threshold (d , T)i+1 i= i

si

di = | f i i- µ |

b 0xffi =

µi+1 = µ fi i. (1-) + .a a

T i T i i= hs

Yes

No

s si+1 = i i. (1-) + .a ad

Background/Foreground Detection

The block diagram of the algorithm is shown in Figure 9.

Figure 9. A Statistical B/F Detection Based on the Gaussian Model

A simplified statistical B/F detection algorithm is shown below.
coefficientMean=255-learningRateMean;
coefficientVariance=255-learningRateVariance;
for (i = 0; i < size; i++)
{

difference= abs(currentFrame[i]-backgroundMean[i]);
if(backgroundVariance[i]<varianceThreshold)

threshold=varianceThreshold;
else

threshold= backgroundVariance[i]*thresholdGain;
if(difference>threshold)
bfMask[i]=0xff;
else
{
bfMask[i]=0;
weightSum =
(backgroundMean[i]*coefficientMean+currentFrame[i]*learningRateMean)>>8;
backgroundMean[i]=weightSum;
weightSum =
(backgroundVariance[i]*coefficientVariance+difference*learningRateVariance)>>8;
backgroundVariance[i]=weightSum;

}
}

The optimized kernel on the C64/C64x+ DSP is shown below.
gain=gain | gain<<8 | gain <<16 | gain<<24;
threshold1=varianceThreshold | varianceThreshold<<8 | varianceThreshold <<16 |
varianceThreshold<<24;
lrMean=learningRateMean | learningRateMean <<8 | learningRateMean<<16 |
learningRateMean<<24;
clrMean=_sub4(constantFF,lrMean);

// #pragma UNROLL(2);
for(i=0;i<size;i+=8)
{
p0123=_lo(_memd8_const(¤tFrame[i]));
p4567=_hi(_memd8_const(¤tFrame[i]));
b0123=_lo(_memd8_const(&backgroundMean[i]));
b4567=_hi(_memd8_const(&backgroundMean[i]));
v0123=_lo(_memd8_const(&backgroundVariance[i]));
v4567=_hi(_memd8_const(&backgroundVariance[i]));

temp0123=_mpyu4(v0123,gain);
threshold2=_packl4(_hi(temp0123), _lo(temp0123));
bit0123=_cmpgtu4(threshold2,threshold1);
bitPos0123=_xpnd4(bit0123);
cBitPos0123=~bitPos0123;
term1=bitPos0123 & threshold2;

10 Video Background/Foreground Detection Implementation on TMS320C64/64x+ DSP SPRAAM6–June 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAM6

www.ti.com

Background/Foreground Detection

term2=cBitPos0123 & threshold1;
threshold0123=_saddu4(term1,term2);

temp4567=_mpyu4(v4567,gain);
threshold2a=_packh4(_hi(temp4567), _lo(temp4567));
bit4567=_cmpgtu4(threshold2a,threshold1);
bitPos4567=_xpnd4(bit4567);
cBitPos4567=~bitPos4567;
term3=bitPos4567 & threshold2a;
term4=cBitPos4567 & threshold1;
threshold4567=_saddu4(term3,term4);

dif0123=_subabs4(p0123,b0123);
dif4567=_subabs4(p4567,b4567);
bit0123=_cmpgtu4(dif0123,threshold0123);
bit4567=_cmpgtu4(dif4567,threshold4567);
bitPos0123=_xpnd4(bit0123);
bitPos4567=_xpnd4(bit4567);
cBitPos0123=~bitPos0123;
cBitPos4567=~bitPos4567;
part1a = _mpyu4(b0123,clrMean);
part1b = _mpyu4(p0123,lrMean);
part2a = _mpyu4(b4567,clrMean);
part2b = _mpyu4(p4567,lrMean);

term1=_packh4(_hi(part1a), _lo(part1a));
term2=_packh4(_hi(part1b), _lo(part1b));
term3=_packh4(_hi(part2a), _lo(part2a));
term4=_packh4(_hi(part2b), _lo(part2b));
backgroundNext0123=_saddu4(term1,term2);
backgroundNext4567=_saddu4(term3,term4);

part1a = _mpyu4(v0123,clrVariance);
part1b = _mpyu4(dif0123,lrVariance);
part2a = _mpyu4(v4567,clrVariance);
part2b = _mpyu4(dif4567,lrVariance);
term1=_packh4(_hi(part1a), _lo(part1a));
term2=_packh4(_hi(part1b), _lo(part1b));
term3=_packh4(_hi(part2a), _lo(part2a));
term4=_packh4(_hi(part2b), _lo(part2b));
varianceNext0123=_saddu4(term1,term2);
varianceNext4567=_saddu4(term3,term4);

term1=bitPos0123 & b0123;
term2=cBitPos0123 & backgroundNext0123;
backgroundNext0123=_saddu4(term1,term2);

term3=bitPos4567 & b4567;
term4=cBitPos4567 & backgroundNext4567;
backgroundNext4567=_saddu4(term3,term4);

term1=bitPos0123 & v0123;
term2=cBitPos0123 & varianceNext0123;
varianceNext0123=_saddu4(term1,term2);

term3=bitPos4567 & v4567;
term4=cBitPos4567 & varianceNext4567;
varianceNext4567=_saddu4(term3,term4);

_memd8(&backgroundMean[i])=_itod(backgroundNext4567, backgroundNext0123);
_memd8(&backgroundVariance[i])=_itod(varianceNext4567, varianceNext4567);
_memd8(&bfMask[i])=_itod(bitPos4567,bitPos0123);
}

SPRAAM6–June 2007 Video Background/Foreground Detection Implementation on TMS320C64/64x+ DSP 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAM6

www.ti.com

()

()

()

()

1
1

1
1

1 & &1 1

1 & &
1

fi ii

di ii

b bi i i ii

b bi i i ii

+
m = - a m + a

+

+
s = - a s + a

+

+
m = - m + m

+ +

s = - s + s
+ (3)

3 Experiments and Results

(A) (B) (C)

(A) (B)

Experiments and Results

In order to use the SIMD instruction efficiently, delete the conditional structure of step 4 in the following
equation.

B/F mask, bi , is 0xff for the background and 0 for the foreground. For every four pixels, the B/F masks are
gotten first and then packed into a 32-bit integer by using the _cmptu4 and _xpnd4 instructions. Second,
(1-bi) is calculated. The _saddu4 instruction is used to generate the new {µi+1, σi+1} for every four pixels
together.

Two 720×480 security video sequences are used to benchmark the algorithms. The performance data is
collected in the Code Composer Studio™ software C64x+ cycle accuracy simulator. First, the results of all
methods are shown. Second, special application scenarios are listed for all methods. Finally, the algorithm
cycle consumptions on C64x+ DSP are presented.

A A captured video frame.

B The output B/F mask based on two-frame method.

C The output B/F mask based on three-frame-method.

Figure 10. The Results of Non-Adaptive B/F Detections

A A captured video frame.

B The output B/F mask.

Figure 11. The Results of Adaptive B/F Detections

12 Video Background/Foreground Detection Implementation on TMS320C64/64x+ DSP SPRAAM6–June 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAM6

www.ti.com

(A) (B)

4 Conclusion

Conclusion

A A captured video frame.

B The output B/F mask.

Figure 12. The Result of Statistical B/F Detection Based on Gaussian Model

The different methods of B/F detection are described in Table 1.

Table 1. Application Scenarios of Different B/F Detection Methods

B/F Detection Application Scenarios

B/F detection based on two frames Motion detection

B/F detection based on three frames A short-term object tracking/recognition in a controlled
environment.

Adaptive B/F detection A long-term surveillance in a noiseless environment.

Statistical B/F detection based on Gaussian model A long-term surveillance in a dynamic lighting condition and
noisy environment.

The cycle consumption for various algorithms is shown in Table 2.

Table 2. C64/C64x+ DSP Cycle Consumption for Various Algorithms (1)

B/F Detection B/F Detection Adaptive B/F Statistical B/F
Cycles/Pixel 2f 3f Detection Detection

Natural C implementation 3 4 5 6

Optimized implementation on 0.38 0.5 0.5 1.13
C64/C64x+ DSP

QVGA 10 fps 291840 384000 384000 867840

D1 10 fps 1313280 1728000 1728000 3905300

(1) Flat memory model

We observed that the MHz consumption of all methods are reduced significantly after optimization in
Table 2. These achieve very efficient B/F detection on the C64/C64x+ DSP.

Four existing methods of B/F detection are implemented on the C64/C64x+ DSP in this application report
and achieve very efficient MHz consumption. Non-adaptive methods are useful for short-term object
tracking/recognition in a controlled environment. Adaptive B/F detection is useful for long-term surveillance
in a noiseless environment. Adaptive statistical method can handle long-term surveillance in a dynamic
lighting condition and noisy environment. B/F detection is an important module of VCA. The optimized
kernels are key to reducing the overall VCA application MHz consumption. The optimization technique
used for B/F detection is helpful for the remaining algorithm modules in VCA.

SPRAAM6–June 2007 Video Background/Foreground Detection Implementation on TMS320C64/64x+ DSP 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAM6

www.ti.com

5 References

References

1. C. Stauffer and W Grimson. Adaptive Background Mixture Models for Real-Time Tracking, Proc IEEE
Conference Computer Vision and Pattern Recognition, 1999.

14 Video Background/Foreground Detection Implementation on TMS320C64/64x+ DSP SPRAAM6–June 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAM6

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Telephony www.ti.com/telephony

Low Power www.ti.com/lpw Video & Imaging www.ti.com/video
Wireless

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lpw
http://www.ti.com/video
http://www.ti.com/wireless

	1 Introduction
	2 Background/Foreground Detection
	2.1 Background/Foreground Detection Based on Two Frames
	2.2 Background/Foreground Detection Based on Three Frames
	2.3 Adaptive Background/Foreground Detection
	2.4 Statistical Background/Foreground Detection Based on Gaussian Model

	3 Experiments and Results
	4 Conclusion
	5 References

