
Application Report
SPRAAX4 – July 2008

Getting Started With the C6000 Network Development Kit
(NDK)

Eric Wilbur Technical Training Organization
Rafael de Souza Software Development Organization
Mohsen Khayami Digital Field Applications

ABSTRACT

This guide was written for beginning and intermediate users of the C6000 Network
Development Kit (NDK). After downloading the evaluation version or purchasing the NDK,
new users should read this guide and do the corresponding labs to gain familiarity with the
NDK directories, files, and working code examples. Most of the “getting started”
challenges which new users face when they first open the box are covered in detail.

Project collateral and source code discussed in this document can be downloaded from
the following URL: http://www-s.ti.com/sc/techlit/spraax4.zip.

Contents
1 Introduction ...4
2 Introduction to Networking ..5

2.1 Client-Server Paradigm...5
2.2 Networking Overview ..6
2.3 OSI Model ...7
2.4 TCP/IP Implentation of the OSI Model ..8
2.5 Networking – Terms and Definitions ...9
2.6 Anatomy of an Ethernet Frame ...10

3 EMAC Architecture Overview ..11
3.1 EMAC is a Master Peripheral ..11
3.2 Media Independent Interfaces (MII) ..12
3.3 EMAC Module ...13
3.4 EMAC Data Layer – Example (TX) ...14

4 Network Development Kit (NDK) ...15
4.1 TI’s NDK Implementation ..15
4.2 Network Development Kit (NDK) Contents ...16
4.3 Purchasing the NDK..17
4.4 Installing the NDK (some highlights) ...18

5 Client.pjt – Your “StarterWare”..19
5.1 Client.pjt Example – Overview ..19
5.2 Client.pjt – What Does it Contain? ..20
5.3 Client.pjt – Libraries...21

1

SPRAAX4

6 Lab 1: Code Composer Studio (CCS) Setup...22
6.1 Lab Overview: ...22
6.2 Hardware Setup ..23
6.3 CCS Setup ..23
6.4 Set up CCS – Customize Options ...25

7 Lab 2: Analyze Audio Pass Thru Application...28
7.1 Lab Overview: ...28
7.2 Open the Project, Build/Run..29
7.3 Debugging Techniques ...30
7.4 Analyze TCF (Text Configuration File) ..31

8 Lab 3: Using Client.pjt “Out of the Box”...33
8.1 Lab Overview: ...33
8.2 Open Client.pjt and Run It ...34
8.3 Play With the NDK Services in Client.pjt ...37

9 Lab 4 – Combining the NDK and Audio Lab...40
9.1 Lab Overview: ...40
9.2 Introduction..41
9.3 Modify Client.pjt to Include Application Files/Libraries ..41
9.4 Modify Source Files...43
9.5 Port DSP/BIOS Settings From Application to NDK ...46
9.6 Build, Load and RUN !...47

10 Modifying Client.pjt ...48
10.1 Deleting Client.pjt Source Files ...48
10.2 Client.pjt – Modifying Newservers.c ..49
10.3 Client.c Source File – Overview ..50
10.4 Client.c – Remove Telnet Service ...50
10.5 Client.c – Remove HTTP Service..51
10.6 Client.c – Remove “USE_OLD_SERVERS”..51
10.7 Client.c – Remove Unused DAEMON Servers ...52
10.8 Client.c – Clean Up ...52

11 Lab 5 – Modify Client.pjt ...53
11.1 Lab Overview: ...53
11.2 Modify Client.pjt...54
11.3 Save Your Solution and Close CCS..62

12 Sockets Programming ..63
12.1 What is a Socket? ...63
12.2 TCP – Sockets Programming APIs ...64
12.3 TCP – Application Example (echosrv.c)..65
12.4 File Descriptor (FD) Environment..66
12.5 Echosrv.c – Deep Dive (1/4) ...67
12.6 Echosrv.c – Deep Dive (2/4) ...68
12.7 Echosrv.c – Deep Dive (3/4) ...69
12.8 Echosrv.c – Deep Dive (4/4) ...70
12.9 UDP – Sockets Programming APIs...71
12.10 TCP vs. UDP ...72
12.11 Sockets Programming vs. DAEMON...73

13 Lab 6 – Use Sockets Programming APIs ..74
13.1 Lab Overview: ...74
13.2 Use Sockets Programming to SEND Data ..75

2 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

13.3 Save Your Solution and Close CCS..77
14 Conclusion...78

14.1 NDK Considerations..78
14.2 Update – New NDK version 1.94 ..79
14.3 For More Information… ...79

15 Advanced (but useful) Topics..81
15.1 Introduction..81
15.2 Callback Functions ..82
15.3 Order of Events (inside the NDK…) ..82

 Getting Started With the C6000 Network Development Kit (NDK) 3

SPRAAX4

1 Introduction
This guide was written for beginning and intermediate users of the C6000 Network Development
Kit (NDK). After downloading the evaluation version or purchasing the NDK, new users should
read this guide and do the corresponding labs to gain familiarity with the NDK directories, files,
and working code examples. Most of the “getting started” challenges which new users face
when they first open the box are covered in detail. The intent of this guide is NOT to replace the
NDK User Guide (SPRU523) and the NDK Programmers Guide (SPRU524) – but to
complement the content of these documents and increase the user’s out-of-box experience.

This guide may contain information you already know. The goal of this guide was to be
comprehensive so that users with different experience levels could either read the guide
from start to finish (which is recommended) or locate the specific information that is
required and only read/study those sections.

There are 6 labs contained in this guide. The first two are simply getting used to Code
Composer Studio (CCS) and a simple audio pass-through lab that shows basic DSP/BIOS
threads. The 3rd lab shows you how to open up one of the key NDK examples (client.pjt)
and run it. This is the first introduction to the NDK software. The 4th lab walks you through
combining the NDK and the audio application – this is by far the most critical lab. The 5th
lab shows you step-by-step how to modify client.pjt to do one specific thing – a DAEMON
server. This is a helpful example regarding how to modify client.pjt to do specifically what
you need in your application. Lab 6 walks you through a sockets programming example.

After successfully reading this guide and doing the labs, the next step is to read chapters
1-3 of the NDK User Guide (SPRU523). This document contains many useful tips that
were not duplicated in this Getting Started Guide. If you plan to use sockets programming
APIs, the NDK Programmers Guide (SPRU524) is a must read because it contains details
regarding all of the supported sockets programming APIs.

The NDK is a software layer (actually, several layers) that uses TI’s real-time kernel,
DSP/BIOS, which configures, controls and uses the hardware EMAC (Ethernet Media
Access Controller) peripheral. There are two types of users of the EMAC: (1) users who
know sockets programming and simply want to use the NDK as is; (2) users who are
doing their own software layer above the EMAC and need to know the details of the
EMAC architecture. This getting started guide is focused on the NDK software and
therefore will not go into much detail on the EMAC hardware architecture. For more
information about the EMAC peripheral, refer to SPRU975 – EMAC User Guide.

NOTE: While this guide and labs are based on the TMS320C6455 device and DSP
Starter Kit (DSK), the concepts presented here can be applied to any NDK user on any
platform. You will simply need to pay close attention to the specific path names, file
names and/or directories based upon the platform being used. The NDK code is the same
for any platform (such as DM648, DM6437/C6424) – only the HAL (hardware abstraction
layer) libraries are specific to the development board being used.

4 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

2 Introduction to Networking

2.1 Client-Server Paradigm

Networking is basically a set of processing nodes used for data communication. From a high
level, you have client and a server. The client requests information from a server and the server
responds by sending the client the requested data. When you open a browser on your computer
and type in a URL, the server (e.g. www.cnn.com) magically appears on your browser screen.
What happens in that relatively small amount of time (from request to response) can be quite
complex.

However, standards have helped make this type of communication relatively straightforward.
Fairly rigid protocols have been developed to help both client and server application
programmers get their networking system working rather quickly.

The Getting Started Guide does not cover all aspects and details about networking, but focuses
mostly on how the Network Development kit developed for TI’s Digital Signal Processors (DSPs)
can assist embedded programmers to quickly develop networking software for a range of
applications from servers (DAEMON or via sockets programming), clients, web development,
ftp, etc.

We will begin with a general overview of terms of definitions and then proceed to giving an
overview of the NDK. TI provides our own stack and example software that users can modify to
fit their own system needs. One of the main goals of this app note is to take it from a user’s
perspective. You purchase the NDK from TI and you ask “now what?” This guide will attempt to
enhance your “out of box experience” and avoid common problems/hiccups that first-time users
experience.

Client-Server Paradigm
Typical network app has two pieces:

client and server

Server

www.cnn.com

Client

browser
• Initiates contact w/server
• Speaks first
• Requests service/data from server

• Provides requested service
to client

• Sends requested data
(e.g. web page)

EMAC
6455

PHY EMAC
6455

PHY

 Getting Started With the C6000 Network Development Kit (NDK) 5

http://www.cnn.com/

SPRAAX4

2.2 Networking Overview

If you have extensive networking experience, the terms and definitions that follow will be a
review. We are attempting to build a baseline of basic knowledge that we plan to build on
throughout this rest of this guide.

Networking Overview
¾ What is a network? “A set of data processing nodes that are interconnected

for the purpose of data communication.”

¾ What is a protocol? “A set of rules and conventions about the communication
in the network: e.g. data format, interpretation, timing.”

¾ What problem are we trying to solve?
9 Send DATA across a network – any protocol can be used (and there are many)
9 The “physical” layer can be anything (cables, satellite, wireless, etc.). This layer will

conform to some standard (e.g. IEEE 802.11 wireless, IEEE 802.3 wired, etc.)

¾ Networking can be split into multiple “layers”:

App• MPEG
• HTTP

Protocol Stack• TCP
• UDP

EMAC

PHY

• Data
Format

• Physical
Network

App

Protocol Stack

EMAC

PHY

• MPEG
• HTTP

• TCP
• UDP

• Data
Format

• Physical
Network

Networking and communications are broad topics and cover a wide range of protocols, software
and hardware. As stated above, a network is a set of data processing nodes that are
interconnected in order to process data over small or large distances. On each end (source and
destination), you will typically see an application running (client or server, e.g.). Most networking
systems use a layered approach to interpreting and processing data that is transferred over a
network. In this way, the application developer does not have to understand the entire software,
protocols, stack, hardware peripheral (Ethernet MAC) and physical network. The application
programmer is abstracted from these details which allows them to quickly write applications that
suit their system needs, thus allowing the programmer to focus on their area of expertise – the
application.

Most of the layers underneath the application are fairly rigidly defined. Depending on the
processor of choice, the EMAC hardware may vary slightly and the actual physical connection
(PHY) and how the data is transferred over the local area or wide area network can vary greatly
– i.e. it could be over a wired connection (IEEE 802.3), wireless (IEEE 802.11), etc.

6 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

If every application programmer used their own protocol, EMAC hardware, etc., writing
something that worked would be nearly impossible. So, standard protocols were developed in
the late 1970s that defined the purpose of each layer to provide some standardization of how
data communication should work. These protocols have been modified to keep up with today’s
technology to increase flexibility and enhance features.

2.3 OSI Model

In the late 1970s, this OSI model was developed to describe the function and purpose of each
layer of a communication network. This is an abstract model – and every network
implementation uses either the entire OSI model or a subset of it. As you can see below, each
layer has a specific function from the physical layer that defines the actual electrical/physical
specs for hardware devices all the way to the top layer – the application.

Any type of data communication can be implemented using this layered approach. The transport
layer is a key area where protocols are defined and used. You may have heard of TCP or UDP –
two of the more popular transport protocols. In this app note, we will focus more on these
protocols as used by the data layer over Ethernet. We will describe in detail how TI’s Network
Development Kit (NDK) helps users develop application code that can use these protocols to
communicate using these protocols over a network.

OSI Model
� The OSI (Open Systems Interconnection) Model is a layered, abstract description

for communications and computer network protocol design, developed in 1977.
� The model contains two components: the abstract model (shown below) and a

set of concrete protocols. This model describes ANY type of data communciation.
� Each layer has a specific responsibility. Each implementation of a network or

protocol may or may not contain all layers.

App

Presentation

Session

Transport

Network

Data Link

Physical

Layer DescriptionData Unit

Host

Media

Data

Segments

Packets

Frames

Bits

Network process to application

Transforms data to provide a standard i/f for app layer (data encryption)

Controls dialogues/connections between computers (sessions)

Transparent transfer of data between end users (TCP, UDP)

Functional variable-length data transfer from src-dst (IP, routers)

Transfer data between network entities, detect PHY errors (ethernet)

Defines all electrical/physical specifications for devices (PHY)

One of the most popular implementations of this model is TCP/IP…

We will also investigate how the NDK incorporates several of these layers in order to allow the
application programmer to focus on the application and not all the details in the lower layers.
The NDK provides a set of libraries that use common sockets programming APIs to configure
the lower layers rather easily.

 Getting Started With the C6000 Network Development Kit (NDK) 7

SPRAAX4

Throughout this guide, we will continue to bring up this “layered” approach because the current
implementations are all built upon this common model. It helps to know where and why these
layers exist and how each layer is handled from the top to the bottom.

One of the more popular protocols we will investigate is TCP/IP (Transmission Control
Protocol)/(Internet Protocol)…

2.4 TCP/IP Implentation of the OSI Model

This TCP/IP model was developed in the late 1970s by DARPA to describe and define the
internet’s protocols and structure. It has fewer, less rigidly defined layers which makes it easier
to adapt to real-world protocols.

TCP/IP Implementation
� The TCP/IP model is a layered abstract description for communications and

computer network protocol design, created in the late 1970s by DARPA.
� TCP/IP defines the internet’s protocols and structure. It has fewer, less rigidly

defined layers than the OSI model – an easier fit for real-world protocols.
� Let’s compare the OSI model to the TCP/IP model:

App

Presentation

Session

Transport

Network

Data Link

Physical

App

Transport

Network

Data Link

Physical

• SMTP
• HTTP
• FTP

OSI Model TCP/IP Model

• TCP (Transmission Control Protocol)

• IP (Internet Protocol Address)

• EMAC (Ethernet, IEEE 802.11, etc.)

• PHY (copper, optical fiber, Wi-Fi)

Let’s review some terms and definitions…

As you can see, TCP/IP combines the top three layers into one application layer – these
applications might be SMTP, HTTP, FTP and others commonly used in the internet today like
web browsers, audio and video players, chat, instant messaging, etc. The transport layer
protocol has two variations: (1) TCP, which allows handshaking between the client and server
and therefore guarantees the correct delivery of information; (2) UDP, which does not implement
handshaking (therefore, it is less reliable) but has an overall reduced communications overhead
(thus, a bit faster). Please note that both protocols do not guarantee delivery of data – i.e. if a
wire is broken, no data is ever delivered – but only a node or computer using TCP will be aware
of it.

IP is the logical internet address within the local network – i.e. a unique identifier for a computer
or node inside a network. In wide area networks, the IP addresses can assume the same value
among different local networks – i.e. the ISP might have a unique IP address, but every node
underneath contains logical IP addresses to allow routing of the data to the correct node or
computer on the network.

8 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

The data link layer uses an Ethernet MAC (Media Access Controller) that filters out any incoming frames
not specifically destined to the node or computer on the network. To conform to the IEEE standard, all
network equipment manufacturers are required to have unique sets of MAC addresses registered at the
IEEE registration authority (http://standards.ieee.org/regauth). The physical network could be anything –
copper, optical fiber or Wi-Fi.

In this guide, we are focused mainly on Ethernet networking, the NDK and TCP/IP. So, let’s look at some
basic terms and definitions related to this more specific area of data communications…

2.5 Networking – Terms and Definitions

This is a view of the data flow between the layers. Let’s start at the bottom right of the slide
below. A packet arrives over the physical network. This packet contains three basic pieces of
information: (1) the header (which contains the MAC address and other routing information); (2)
the data itself (or payload); (3) the trailer – which contains a checksum for error-checking
purposes.

The MAC address uniquely identifies a network adapter – e.g. the NIC card in your computer.
The EMAC hardware processes the packet header and analyzes the MAC address. If the MAC
address in the packet doesn’t match the one configured on this specific adapter, the packet is
not processed. In the upper layer (network), a second filtering takes place: the packet contains
the IP address that is the logical identifier for the computer inside the network.

The packet also contains a port number. The port number is used to map the data to a specific
application. Actually, these port addresses are unique for each application. HTTP uses one port
number – FTP uses a different specific port number, etc.

Networking – Terms and Definitions

MPEG H.264 FTP HTTP

Voice/Video Data

Client/Server APPLICATION

IPIP
Address

Port #

EMAC

TCP UDP

MAC
Address

PHY

SOCKET

TCP/IP
“Stack”

Packet

Packet
• a formatted block of data carried by a network consisting of 3 elements: header (beginning),

data (or payload), trailer (which contains the checksum for error checking)

MAC Address
• an identifier attached to most network

adapters (NICs). A number that acts like
a name for a particular network adapter.

IP Address
• a unique logical address used to identify and

communicate over on a computer network
(a computer address)

Port #
• a special number present in the header of a

data packet used to map data to a process.
If IP = city block, port = house number.

Socket
• an intelligent buffer that connects the app to

the transport layer. Can be implemented over
any transport protocol (most popular types
are: Datagram (UDP) and Stream (TCP).

What data does an Ethernet packet contain?

 Getting Started With the C6000 Network Development Kit (NDK) 9

http://standards.ieee.org/regauth

SPRAAX4

A socket is an intelligent buffer that is used to interface the application to the TCP/IP stack. The
NDK provides common sockets programming APIs to allow the application programmer to
interface to the TCP/IP stack in order to “open” a socket and transmit/receive data to the
network.

We will investigate sockets programming later in this document.

Before we cover the NDK in more detail, we’d like to quickly cover some of the aspects of the
EMAC hardware. To program this hardware manually requires a lot of time and expertise. If you
plan NOT to use the NDK, you must become very familiar and intimate with each process inside
the EMAC hardware and create your own stack (not easy, but it has been done by larger
Communications Infrastructure companies). Using the NDK (kind of like a driver for the EMAC)
is the quickest way to get your application running/receiving/transmitting network data.

2.6 Anatomy of an Ethernet Frame

An Ethernet frame contains 3 basic parts: (1) a header; (2) payload (data); (3) trailer
(checksum). The key parts of the header are the source and destination MAC addresses and the
length of the payload (data). All of this information is used to determine if this packet is
designated for this specific EMAC device or not. If the packet’s IP address matches, the packet
is processed and the data is read by the EMAC peripheral and transferred into memory (as
specified by the peripheral’s configuration).

Ethernet Frame
¾ An Ethernet Packet is comprised of the following:

• Ethernet Header

Preamble SFD Destination Source Len Data FCS

7 1 6 6 2 46-1500 4# Bytes

IP
HDR

TCP
HDR Application Data

9 Destination MAC Address
9 Source MAC Address

9 Length

• Data

10 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

3 EMAC Architecture Overview

3.1 EMAC is a Master Peripheral

This is the architecture of the TMS320C6455 DSP. Each C6000 device that contains an EMAC
may have slight differences from the picture below, but they are not relevant for a beginning
user.

The Data Switched Central Resource (SCR) is a large bus switch that receives requests for
resources that are tied to it. On the left are the master peripherals. On the right are the slave
peripherals. The main difference between master and slave peripherals is that master
peripherals can INITIATE a transfer – in other words, they have their own DMA controllers.

There are many details on this slide, but for the purposes of this discussion, the main point here
is that the EMAC peripheral has its own DMA controller that can read/write to slave resources
(e.g. DDR2 memory or internal L1/L2 memories).

C6455 – SCR – EMAC
EDMA3

TC0
TC1
TC2
TC3

EMAC
HPI
PCI

SRIO

TCP2

VCP2
McBSP

PCI
Utopia

DDR2

L2
Mem
Ctrl

L2

L1P

L1D

D
S
M
L

D
S
M
L

CPU

C64x+ MegaModule

M

S

S

M M

S

IDMA

L1P
Mem
Ctrl

L1D
Mem
Ctrl

AET

DATA
SCR CFG

SCR

EMIF

128

128

Cfg

PERIPH
M S

M S
Master Slave

¾ EMAC is a master on the DATA SCR (can initiate a transfer to anywhere – has its own DMA)
¾ TX and RX connect to the DATA SCR
¾ Config registers and descriptor memory located on CFG SCR

32

PERIPH =
All peripheral’s
Cfg registers

SCR = Switched Central Resource
32

External
Mem
Cntl

CC

 Getting Started With the C6000 Network Development Kit (NDK) 11

SPRAAX4

3.2 Media Independent Interfaces (MII)

These terms – RMII, MII, GMII, and RGMII describe the size (# bits) and speed associated with
the interface. Many architectural diagrams and datasheets just say “this chip has an RMII or
GMII” – if you don’t know what they mean, then you could be confused. It is not necessary to
understand each signal in the block diagram – this is outside the scope of this discussion.

MII is the acronym for Media Independent Interfaces which specifies how many data bits and
how fast it can run. For example, RMII is “Reduced” MII and uses 2-bit data and can run at 10 or
100 Mbps. The MII data signals are MRXD (for Rx) and MTXD (for Tx). The number of data bits
depends on the type of MII interface. The MDIO signals are MDCLK and MDIO. These signals
are used by the EMAC to interrogate and control the PHY.

Management Data Input/Output, or MDIO, is a bus structure defined for the Ethernet protocol.
MDIO is defined to connect Media Access Control (MAC) devices with PHY devices, providing a
standardized access method to internal registers of PHY devices.

These internal registers provide configuration information to the PHY. This bus allows a user to
change configuration information during operation, as well as read the PHY's status. It is a
standard-driven, dedicated-bus approach that's specified by IEEE workgroup 802.3. The MDIO
interface is implemented by two pins, an MDIO pin and a Management Data Clock (MDC) pin.
This standard is available for all speeds of Ethernet.

Media Independent Interfaces (MII)
¾ C6455 EMAC supports 4 types of interfaces:

• RMII – Reduced MII (2-bit data, 10/100 Mbps)
• MII (4-bit data, 10/100 Mbps), shown below
• RGMII – Reduced GMII (4-bit data, 10/100/1000 Mbps)
• GMII – Gigabit MII (8-bit data, 10/100/1000 Mbps)

¾ EMAC: data interface between PHY and system core (clk, control, data)

¾ MDIO: used to interrogate/control Ethernet PHY

How does the EMAC work?

12 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

3.3 EMAC Module

This is a quick overview of how the EMAC peripheral works. There are several blocks that will
require further investigation by the user – however, the point here is to have a basic
understanding of the receive and transmit paths and the presence of two DMA engines – one for
receive and one for transmit.

For receive, the packet arrives at the PHY device. The MAC receiver parses the data and
transfers it to the receive FIFO. The receive DMA engine then makes a request to the EMAC
Control Module (and then to the Data SCR) to transfer this data from the FIFO to a resource tied
to the Data SCR. No CPU involvement is required because the EMAC contains its own DMA
controller that can initiate transfers of data independent of the CPU.

The transmit side is similar – just back the other way. The EMAC control module requests a
transfer from a Data SCR resource to the transmit FIFO. The transmitter then compiles a packet
with the data and sends it out via the PHY device.

Other blocks are busy gathering statistics, managing the clocks and configuration registers as
well as optional interrupts that can be sent to the CPU. If a user didn’t have the NDK, they would
need intimate knowledge of each configuration register, buffer descriptors, etc. in order to
program the EMAC to perform a transfer. While it is possible to do this manually, having the
NDK services makes life much easier.

EMAC Module
¾ EMAC module interfaces the PHY components through one of the four Media Independent

Interfaces (MII, RMII, GMII, RGMIII) and system core via the EMAC control module.
¾ RX path: PHY, MAC receiver, FIFO, DMA engine, EMAC control module
¾ TX path: EMAC control module, DMA engine, FIFO, MAC transmitter, PHY
¾ Also includes statistics, state RAM, interrupt controller, control regs/logic, clock/reset logic

PHY
Data
SCR

 Getting Started With the C6000 Network Development Kit (NDK) 13

SPRAAX4

3.4 EMAC Data Layer – Example (TX)

Here is a brief look into how a packet might be transmitted to the PHY. The EMAC uses buffer
descriptors to contain the proper information needed for a transfer – kind of like a DMA
configuration specifies source, destination and length information. There is a total of 8K bytes of
descriptor memory for both Rx and TX (512 descriptors at 16 bytes each). A single buffer
descriptor is 16 bytes long and contains the following:

Next Buf points to the next descriptor if you have one. Buf Ptr contains pBuf (the source of the
transfer). bufOff is the offset from Buf Ptr to the first piece of valid data (if necessary). bufLen is
the length of the buffer (256 bytes). pktLen is the length of the entire packet (multiple
descriptors).

Flags contain information/status about the packet and transfer.

The CPU has to fill in the descriptors before the HDP (head descriptor pointer) is written to. The
HDP is the “Head” (as opposed to the tail) of a linked list of descriptors. When the “head” is
written to, this initiates the transfer (via the EMAC’s DMA) from the L2 memory to the transmit
FIFO (and eventually to the PHY).

When the TXnHDP is written to, this initiates the transfer from L2 (in this case) to the EMAC
FIFOs. The EMAC then processes it (adding CRC, etc) and then sends it to the PHY. This
EMAC processing is automatic – no user intervention is required.

Again, the point here is that the NDK can perform all of this configuration and processing for you
vs. doing it manually. For most users, this is a huge time savings in their application
development.

EMAC Data Layer – Example (TX)
¾ Goal: send a 256-byte packet from L2 to the PHY

DST SRC LEN DATA

256 bytes

L2 SRAM

pBuf

¾ The EMAC has its own DMA controller.
What does it need to know to transfer pBuf to the PHY?

¾ Buffer Location (pBuf), Buffer Len (256 bytes), Next Bfr ptr, some flags (SOP, EOP)
¾ All transfer information is contained in the XMT Buffer Descriptor

PHY

L2

Next Buf Desc
Buf Ptr

bufOff bufLen
Flags pktLen

Buffer
Descriptor

Descriptor
Memory (8K)

0

511

16 bytes TXnHDP

TX DMA

EMAC

¾ When CPU writes TXnHDP (TX Head Descriptor Pointer, n = 0-7), this initiates the transfer

32-bit

So, how do you program this peripheral ?

14 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

4 Network Development Kit (NDK)

4.1 TI’s NDK Implementation

The NDK uses a layered approach similar to the TCP/IP model. As is shown, the App and
physical layers are still present and the NDK model contains the transport, network and data
layers.

The goal here is to make life simple for the programmer. Would you rather spend time looking
up 40-50 configuration registers and the proper bit settings to get this right or look up a few
supported APIs and use them or, simply modify an existing working example to perform exactly
what your application needs?

The heart of the NDK is the TCP/IP stack. It also contains configuration of services such as
HTTP, telnet, DHCP, etc. along with supporting the standard sockets programming APIs. If
you’ve done sockets programming before, the NDK world will look very familiar to you.

TI’s NDK Implementation
� As you can tell, the EMAC is a complex peripheral with MANY registers to properly

configure in order to transmit/receive data.
� Solution? The Network Development Kit (NDK). You can think of the NDK as a

networking O/S for the EMAC (similar to DSP/BIOS being an O/S for the DSP).
� Earlier, we saw the TCP/IP implementation of the OSI model. How does TI’s NDK

compare to the TCP/IP model?

App

Transport

Network

Data

Physical

• HTTP
• TFTP
• Telnet
• DHCP

TCP/IP Model

• Sockets Programming Services
• Internal stack functions
• Configures stack/services

and configures the EMAC

So, what does the NDK contain
and how much does it cost?

App

NDK/EMAC

Physical

NDK Model
• PPP
• DNS
• PPPoE
• many others

 Getting Started With the C6000 Network Development Kit (NDK) 15

SPRAAX4

4.2 Network Development Kit (NDK) Contents

The NDK is a set of libraries and example code that properly initializes and configures the
EMAC peripheral to perform whatever service is required by your application.

When installing the NDK, it is important to note that two separate downloads are required: (1)
the stack (platform-independent set of libraries, code); (2) the examples (platform-dependent
NDK support package). Many customers just download the stack and wonder “where did
client.pjt go?”. Well, client.pjt and many other examples are contained in the 2nd download that
is specific to the board/processor you are using.

The platform-dependent NDK support package is the software set that contains the example
projects and all the hardware libraries for each development kit supported by NDK. The user
should refer to www.ti.com for latest support for each device/development board.

In other words, when you install NDK, you get all the core stack libraries, the documentation, the
main files for the examples (client.c, cfgdemo.c, helloWorld.c), the server files located at
<examples\tools\common\servers>, all the other nettools (webpage.c, console, hdlc, cgi) and the
winapps folder (used to test communications). However, the main board-specific client example
is NOT installed. The examples only get installed with the 2nd download – the platform-
dependent NDK support package.

Network Development Kit (NDK)
� NDK is a set of libraries + example code that properly initialize/configure/operate

the hardware (EMAC) and perform all of the TCP/IP functionality through a set of
“socket” programming APIs (e.g. socket, bind, send, recv, etc.)

� $5K one-time licensing fee
� Provides a seamless interface to the physical layer (EMAC/PHY)

• HTTP
• TFTP
• Telnet
• DHCP

• Sockets Programming Services
• Internal stack functions
• Configures stack/services

and configures the EMAC

App

NDK/EMAC

Physical

NDK Model

• PPP
• DNS
• PPPoE
• many others

What does the user touch?
• Configuration

Do you know all of the details
of what is going on underneath ?
• Nope

Do you care ?
• Maybe…

Would you like to load an
example and play with it ?
• Of course…we’ll do that

in the upcoming lab…

Where can you purchase the NDK?

16 Getting Started With the C6000 Network Development Kit (NDK)

http://www.ti.com/

SPRAAX4

4.3 Purchasing the NDK

You have several options when it comes to downloading the NDK. First, you can use the
evaluation version provided at the URL listed in the slide below. It is a full working version of the
NDK. However, it contains a timeout “feature” – if the stack runs for 24 hours, it resets itself.

If you plan to purchase the NDK, you can do so by visiting the TI eStore or one of TI’s
Authorized Software Providers (ASP). If you purchase from the eStore, basic email/phone
support is provided. However, if you purchase from a TI ASP, you will receive 10-20 hours of
support from that specific ASP. If you purchase other collateral from that ASP, your support will
increase even further.

Where to Purchase the NDK
� Free Evaluation Version

� You can purchase the NDK from either a TI ASP or at the TI eStore:

http://focus.ti.com/docs/toolsw/folders/print/tmdsndk.html

• You can download the evaluation version (contains a timeout “feature”) for free at:

• Evaluation does not expire, but limited to use on DSKs and EVMs only
• Basic support from: http://tiexpressdsp.com/wiki/index.php?title=Category:NDK

http://www.ti-estore.com/

• If you purchase from the TI eStore, basic support is provided via:
http://tiexpressdsp.com/wiki/index.php?title=Category:NDK

• If you purchase from a TI ASP, you will receive 10-20 hours of support from that
specific ASP. If other collateral is licensed (such as a digital media encoder or decoder),
the ASP must provide up to 40 hours of support.

 Getting Started With the C6000 Network Development Kit (NDK) 17

SPRAAX4

4.4 Installing the NDK (some highlights)

Here is a brief summary of the procedure for installing the NDK. Just following these simple
instructions can help you avoid headaches in the future. One of the more common mistakes
users make is forgetting to set the NDK install environment variable – very important – in fact, if
you don’t, nothing works.

Also, do something that is very counter intuitive – READ the readme file. How many times do we
skip reading the readme files? Well, this is one you don’t want to skip.

Also, as documented in one of the upcoming labs, as soon as you install the platform-dependent
examples, make a copy of the /examples directory. This may come in handy if you modify
something and can’t get it back to the original state.

Installing the NDK
� To install the NDK, you need to download two items:

• Platform-independent NDK package (stack, libraries, main files, servers,
nettools, winapps, docs, etc.). Uses InstallShield.

• NDK support packages for platforms (software set with example projects and all
hardware libraries for each development kit supported by the NDK). Delivered
as a .tar file.

� Installation Instructions (for NDK version 1.92)
1. Install CCS. It must be installed before the NDK software.
2. Uninstall any previous version of the NDK, or install in a different directory.
3. Install the NDK software. The installation program will automatically detect where CCS is installed

and it will then install the TCP/IP Stack software under the same directory.
4. The “NDK_INSTALL_DIR” environment variable must be added to point to the top level installation

directory, e.g. :\CCStudio_v3.3\ndk_1_92.

• Documents to read (when you get started)
¾ \ndk\docs\stack\readme.htm (getting started guide, install instructions, etc.)
¾ NDK User Guide (SPRU523), Chapter 3 – Network Application Development
¾ Any relevant application notes

Let’s take a look at one of the examples built around the NDK…

• For additional information and answers to questions, try out TI’s external wiki at:
http://tiexpressdsp.com.

18 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

5 Client.pjt – Your “StarterWare”

5.1 Client.pjt Example – Overview

Once you have download the platform-specific Network Support Package, you’ll find in the
directory structure a project named client.pjt. There are a few others, but we’ll focus on client.pjt
in this guide.

In Code Composer Studio (CCS), when you open this project, you’ll see a list of source files.
Client.c is the main source file that contains the stack initialization and configuration routines.
The other source files are described in brief in the slide below.

Client.pjt may be a misleading name because it contains services like HTTP, telnet, clients AND
servers. So, a better name might have been “ndk.pjt” or “everythingButTheKitchenSink.pjt”. But,
client.pjt is what it is, so let’s get past the name and move on to see what we can do with this
example code…

Client.pjt Example - Overview
� Client.pjt is an NDK example project that is a complete

system that uses several servers/services available to
the developer.

� Key Source Files
Client.c
• Main function and all the initialization/configuration routines in the

main stack function [StackTest()]
• Callback functions like NetworkOpen() and NetworkClose() that

initialize/kill all user application tasks.
• Other callback functions like NetworkIPAddr() and CheckDHCPOptions()

that provide feedback regarding the connection status.

Console (console.c, and all com???.c files)
• Console application that is used by the telnet service

Servers (datasrv.c, echosrv.c, oobsrv.c, nullsrv.c, newservers.c)
• Embedded servers in the NDK client example

HTTP (webpage.c, cgiparse.c, cgiparsem.c)
• internal web page used by the http service and cgi interpreter

 Getting Started With the C6000 Network Development Kit (NDK) 19

SPRAAX4

5.2 Client.pjt – What Does it Contain?

It is best to start with a working example and then modify it to do exactly what your application
needs. For example, you could start with client.pjt and then remove services down to a bare
minimum – e.g. just to perform a DAEMON echo server. Or, you might want to do a sockets
programming echo server.

In one of the first labs you will run, you will open client.pjt, build it and then run it and observe all
of the available services. In a later lab, we’ll document step-by-step how to modify client.pjt to
only do a DAEMON server. For now, let’s see what is inside client.pjt and ask the question –
which files/libraries are essential and which can be removed?

First, all NDK examples use TI’s real-time kernel DSP/BIOS. All services are TSKs in the system
and contain priorities and therefore can be scheduled by DSP/BIOS. If you open up the .tcf file,
you’ll be able to view the DSP/BIOS settings along with cache and other memory settings.

The next major piece of the NDK are the libraries (explained in more detail on the next slide). All
libraries are essential to the NDK operating correctly, so please don’t remove any library files.
Some source files can be modified and we’ll deal with those shortly.

Client.pjt – What Does It Contain?
� When you purchase the NDK, you get several examples. The key example

that you can modify is client.pjt. So, it is thrown in your lap…now what?
� The question is: what do we need to keep and what can we delete? Remember,

our goal is to receive a packet and echo it back.
� Let’s first look at what the client project contains:

¾ Client.pjt contains
• DSP/BIOS .tcf file
• Include Files
• Libraries
• Source Files
• Command File (.cmd)

What do the different libraries do
and which ones can we delete?

¾ Note: client.pjt contains client
AND server software

20 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

5.3 Client.pjt – Libraries

Shown below is a short description of each library and what they contain. If you want to dive in
deeper, there are more detailed explanations in the NDK User Guide (SPRU523).

Again, which libraries can we remove? None. They are all important. Update – revision 1.94 of
the NDK allows users access to the source code for the nettool library, so you can remove
unwanted services and recompile that library to save some code space.

Client.pjt - Libraries
� The NDK Libraries are where all of the work gets done. When you call an API

in source code, it will activate one or several of these libraries to perform the
requested operation and properly configure/run the EMAC hardware.

¾ HAL??.lib (Hardware Abstraction Layer)
• Interfaces the hardware peripherals to the NDK
• Including timers, LED indicators, ethernet devices, serial ports.

¾ MINIPRINTF.lib
• Provides small-footprint printing functions

¾ NETCTRL.lib
• This is the MANAGER of the stack. It controls interaction

between the TCP/IP stack and the outside world
¾ NETTOOL.lib

• Contains all sockets-based network services + a few add’l
tools to aid in developing network applications

¾ OS.lib
• Adaptation layer that maps O/S function calls to DSP/BIOS

function calls. Includes thread mgmt, mem allocation, packet
buffer mgmt, printing, logging, sections, cache coherency

¾ STACK.lib
• Main TCP/IP networking stack. Contains everything from the

socket layer at top to the Ethernet/PPP layers at bottom.

So, which libraries can we delete? None. They are all important. Now, let’s do some labs…

 Getting Started With the C6000 Network Development Kit (NDK) 21

SPRAAX4

6 Lab 1: Code Composer Studio (CCS) Setup

Lab 1 – DSK Hardware/Software Setup

1. Verify hardware setup
2. Supply power & verify connection

1. Run CCS Setup
2. Start CCS
3. Configure CCS Options
4. Close CCS

HardwareSoftware

Time: 15 minutes

Audio Inputs/Outputs

6.1 Lab Overview:

• All labs and code are based on the C6455 DSK. When you download the starter files, they
will only build/run on the C6455 DSK. The Mezzanine card (for use with Serial Rapid I/O) is
not required.

• The goal of this lab is basically just to make sure Code Composer Studio (CCS) and your
hardware are set up properly. If you have minimal experience with CCS, then take the time
to walk through this lab. In lab2, you’ll get to examine the audio pass-through lab and how it
works.

• For all labs, we have used the following setup: CCS 3.3, DSP/BIOS 5.31, NDK version
1.92, C6455 DSK. You can use newer versions of these tools – just be aware that the
author has not tested out these labs on the newer versions.

• If your setup is different than above, you may need to modify some of the steps in the labs
to match your specific setup.

22 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

6.2 Hardware Setup
 Please note, the instructor may have already done these steps for you. Raise your hand and

ask which steps have already been completed. These first few steps are here just for
completeness in case you get home and need some assistance setting up your own board.

1. Connect the USB cable between the C6455 DSK and the PC.

2. Connect the Audio cable to the DSK’s “LINE IN” jack.
 We will connect the other end to the PC after we complete the sound test on the PC.

3. Connect the headphones to the DSK’s “LINE OUT” jack.
 If you have a Y-adapter, plug this into the “LINE OUT” jack on the DSK. You may also use

“HEADPHONE” jack on the DSK, but it has much lower volume.

4. Connect power to the C6455 DSK.
 When power is applied, D3 & D4 LEDs should be lit.

6.3 CCS Setup
 The lab workstations should have been pre-configured with all the necessary software tools.

While Code Composer Studio (CCS) has been installed, you will need to assure it is set up
properly. CCS can be used with various TI processors – such as the C6000 and C5000
families – and each of these has various target-boards (simulators, EVMs, DSKs, and XDS
emulators). Code Composer Studio must be properly configured using the CCS_Setup
application.

5. Start the CCS Setup utility using its desktop icon:

 Be aware there are two CCS icons, one for setup, and the other to start the CCS application.

You want the Setup CCStudio v3.3 icon.

 Getting Started With the C6000 Network Development Kit (NDK) 23

SPRAAX4

6. When you open CC_Setup you should see a screen similar to this:

 Your screen might look different if there were any previous boards installed from previous

classes or work on your student machine.

7. Clear any old system configurations.
 If there are any boards/simulators listed under My System under System Configuration,

click the Remove All button to clear the configuration.

8. Select the proper DSK6455.
 Use the filter in setup. Choose Family = C6455. There should be only 2 boards showing:

C6455 DSK and C6455 DSK with Mezzanine. Click the board that says C6455 DSK and
then click Add. Then select Save & Quit and answer “yes” to startup CCS on exit.

Note: if the DSK “cannot connect to target”, close CCS, hit the white reset button on the DSK (w/pwr
on) and re-invoke CCS.

24 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

6.4 Set up CCS – Customize Options
 Section Overview: There are a few option settings that need to be verified before we begin.

Otherwise, the lab procedure may be difficult to follow. The following bullets are
HIGHLIGHTS for what you will do in the numbered steps.

¾ Disable open Disassembly Window upon load

¾ Go to main() after load

¾ Program load after build

¾ Clear breakpoints when loading a new program

¾ Connect automatically to the target

9. Connect to the target (using Alt-C or Debug → Connect).
 When you connect to the target, watch the symbol in the lower LH corner of CCS change

colors and reflect that you are connected to the target.

10. Use the Customize Dialog box to set specific options.
 Select:

 Option → Customize…

 Under the tab Debug Properties, uncheck the box for Open the Disassembly Window
automatically. Check the Perform Go Main automatically box. Check the following check box:
Connect to the target at startup when a control window is open.

 If there is anything else checked, just leave the settings as they are.

 Getting Started With the C6000 Network Development Kit (NDK) 25

SPRAAX4

11. Set Program Load Options
 On the “Program/Project Load” tab, make sure the options shown below are checked:

¾ Load Program After Build

¾ Auto-save Projects Before Build

¾ Disable All Breakpoints When Loading New Programs

 By default, these options are not enabled, though a previous user of your computer may

have already enabled them. If any other boxes are checked, leave these settings alone.

 Click OK.

 Conceptually, the CCS Integrated Development Environment (IDE) is made up of two parts:

¾ Edit (and Build) programs (uses editor and code gen tools to create code).

¾ Debug (and Load) programs (communicates with DSP/simulator to download/run
code).

 The Load Program After Build option automatically loads the program (.out file) created
when you build a project. If you disabled this automatic feature, you would have to manually
load the program via the File→Load Program menu.

You might even think of an IDE as standing for Integrated Debugger Editor, since those are the two
basic modes of the tool

26 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

12. Make sure CCS is connected to the board.
 Look in the lower LH corner of your CCS window. Hover your cursor over the symbol in that

corner. If the symbol is green and the box says “connected to target”, proceed to the next
step to test the connection. If the symbol is not green and doesn’t say “connected to target”,
do the following:

 Debug → Connect (or “Alt-C”)

 When you perform the connect, you should see the symbol turn green and a box that says
your target is now connected.

13. Load in the test.out file
 On the CCS menu bar, select:

 File → Load Program… (or “Ctrl-L”)

 navigate to: C:\IW64x+\6455_DSK_Testfile\

 Load: audio_app_lab6.out

 If CCS says it can’t find “main.c”, just ignore this and click NO (you don’t want to browse for
it).

14. Run the audio test file.
 You can run by left-clicking on the “Run” button in CCS (located on the LH side):

 Or, you can simply press F5 (or choose Debug → Run).

15. Launch a music file
 Double click on any *.mid file under C:\IW64x+\music

 Confirm that music is playing on the PC (either via the PC’s speaker or plug your headphone
into the PC’s headphone jack). Make sure the media player is set to “repeat” or “play
forever”. This is important because sometimes you think you’re getting “no output” when it
was a simple issue of your music (input) stopped playing.

 Connect the DSK’s LINE IN to the PC’s headphone out. Make sure your earbuds/speakers
are connected to LINE OUT on the DSK.

 Confirm that music is playing via the DSK’s headphone out jack (either by using your
headphones or earbuds). If not connected yet, plug in the Y-adapter and a set or two of the
available earbuds. You should also see LED D10 blinking while the audio is running.

 If the music is NOT playing, contact your instructor for assistance. If music IS playing, you
have successfully set up CCS and connected the DSK correctly.

 You’re Done

 Getting Started With the C6000 Network Development Kit (NDK) 27

SPRAAX4

7 Lab 2: Analyze Audio Pass Thru Application

Lab 2 – Audio Pass Thru Lab

� Objective: Observe operation of a simple audio pass-thru lab. This is the
application that will be merged with the NDK in a future lab

� Application: EDMA-based audio pass through

� Time: 30min

CPUEDMA

RCVCHAN

gBufRcvL/R

ADC

DAC

McBSP
Rcv

Xmt

XMTCHAN

gBufXmtL/R

Ping/Pong

AIC23
Audio Codec

TSK

SEM_post

SEM_post

Copy
SEM_pend
SEM_pend

7.1 Lab Overview:

• In a future lab, we’ll be adding an existing audio application to the NDK. This is your chance
to familiarize yourself with the basic operation of this application.

• If you have minimal experience with DSP/BIOS, Code Composer Studio and the EDMA, this
is a great lab to walk through to help you understand these basic concepts.

• In the 4-day IW6455 workshop, you actually build this example code from the ground up.

• If you don’t have a C6455 DSK, you may need to look at using a different example that
comes with your development board – preferably one that uses DSP/BIOS. The example
code that is required for this lab only works on the C6455 DSK.

28 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

7.2 Open the Project, Build/Run
1. Power cycle the DSK and start CCS using the desktop icon.

2. Reset the C6455 DSK
 Select:

 GEL → DSK6455 Functions → Reset

3. Open the project and observe the contents.
 Select:

 Project → Open

 and navigate to:
 C:\IW64x+\solutions_ti\lab6b\

Open the file: audio_app.pjt

FYI – this is the solution to lab6B which you end up building from scratch in the 4-day IW6455
workshop (hey, sign up today !). Anyway, this will be a quick overview of the application – just
skimming the surface, so buckle up.

Take a moment to look at several critical source files and observe their contents/purpose:

¾ main.c – buffers declared, EDMA setup, enable interrupts, init buffers to zero

¾ edma.c – setup for EDMA channels to copy music data from McBSP to/from buffers

¾ mcbsp_aic23.c – set up for McBSP using register layer chip support library (CSL)

¾ tasks.c – tasks to manage buffers and processing (oh, and toggling the DSK’s LED)

WARNING:

Please note that this lab (and any future labs) will NOT work until you have installed the
latest Chip Support Library (CSL) for the 6455 DSK. The CSL version that was used to
build these files was:

 CSL_6455_v3.00.10.02

You will need to download that version or a later version from the TI web site. It was too
large (about 16M zipped) to ship with the starter lab files.

 Getting Started With the C6000 Network Development Kit (NDK) 29

SPRAAX4

Build the project.
 Select:

 Project → Rebuild All

 Or…

 Click on the Rebuild All icon:

 CCS will compile all files from scratch.
 Note the progress of the build in the Output window at the bottom of CCS. When done, the

output file should automatically be loaded to the DSK target, as indicated by the Loading
Program popup window that should briefly appear during the download. If errors are
reported, recheck the steps above and try again. If there are still errors and you don’t know
how to fix them, ask the instructor for assistance.

7.3 Debugging Techniques
4. Run to Main (if not there already).
 In Lab 0, we also enabled the option to automatically go to main when a program is loaded.

So your program should be sitting at main() right now. If you are not at main(), and the
program has been loaded, run to the main function using:

 Debug → Go Main (or Ctrl-M)

 The debugger should run past the system initialization code, until main() is reached. Since
main() is in main.c, this file should appear in CCS’s main work area. Many initialization steps
occur between reset and your main program.

5. Start music playing.
 On the PC, begin playing music as the input to the DSK via the audio patch cable.

Turn on the output speaker, or prepare to listen to the headphones. The music files can be
found in the C:\IW64x+\music folder (actually, any MP3 or .midi file will work).

6. Run the program.

 Start the program running via Debug → Run, function key F5, or the run icon:

7. Verify that the selected music is now playing from the output device.
 If not, contact your instructor.

8. Halt the program execution.
 To halt the running program, use:

 Debug → Halt

 or the function key Shift+F5, or the halt icon: . After testing the halt function, resume the
program by asserting run again.

30 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

7.4 Analyze TCF (Text Configuration File)

The .tcf file is used to set up various system constructs including memory, DSP/BIOS
Scheduling, semaphores, PRD functions, etc. Let’s look at each one of these briefly. In the next
lab, you’ll have the opportunity to create your own .tcf file from scratch. For now, we just want to
observe the contents of an already written .tcf file to become familiar with it.

9. View System – Global Settings.
 Click on the + next to DSP/BIOS Config and open audio_app.tcf. As you can see, there are

multiple items you can set up using the .tcf file. Let’s look at them in order.

 Click on the + next to System. Right-click on Global Settings and select Properties. As you
can see, this is where you configure the target, DSP frequency, endian mode, and some
Real-Time Analysis choices. Click OK.

10. View MEM – Memory Section Manager.
 Click on the + next to MEM. Notice the memory areas that are configured. Click on IRAM

and observe the base address and length. This is actually the default memory map for the
DSK.

 Let’s view the properties of IRAM – right-click on IRAM and select properties. Do not change
any values – but this is where you can change the properties of each memory area. Click
cancel.

11. View Instrumentation
 Click on the + next to Instrumentation. The LOG manager allows you to create a LOG object

and perform a LOG_printf() to the CCS output screen. This is great for debugging vs. using a
standard printf(). STS is used for statistics. You can benchmark any piece of code you like
using a statistics object and a few commands – again, we’ll do this in a later lab.

12. View Scheduling
¾ Click on the + next to Scheduling. This is where all of the DSP/BIOS Scheduling

constructs are configured – for example, SWIs, TSKs and PRD functions.

¾ Click the + next to PRD. Notice we have one PRD function in the system. This PRD
function runs every ½ second to toggle LED0 on the DSK. Right-click on PRD_waitPRD
and select properties. Observe that the period (in ticks – i.e. 1ms) is set to 500 = ½
second. Click Cancel.

¾ Click on the + next to HWI. This is where you can map interrupt sources to the 12 CPU
interrupts. Click on the “-“ next to HWI.

¾ Click on the + next to TSK. Notice that we have 2 TSKs running in the system (other than
the default TSK_idle): TSK_DipLED and TSK_processBuffer. Right click on TSK_DipLED
and select properties. Select the Function tab. Notice that the function associated with
this TSK is _tskDipLED. Click cancel.

13. View Synchronization.
 Where is the waitPRD semaphore configured? Click on the + next to Synchronization. Click

on the + next to SEM. Notice there are 3 semaphores configured in this system. One of them
is waitPRD. You will gain more experience with these in later labs.

 Getting Started With the C6000 Network Development Kit (NDK) 31

SPRAAX4

14. Close audio_app.tcf and do not save changes.

15. Build, load and run the program.
 First, get some music playing (can be found in C:\IW64x+\music folder).

 Next, click the Rebuild All button toward the top middle of your screen (three red down
arrows). After the program loads, click Run (left hand side – looks like a runner). If audio is
playing into the DSK, you should hear the audio in the headphones.

 The audio is passed through an AIC (analog interface circuit) A/D to the McBSP which
receives one sample at a time. When the receive register is full, it tells the EDMA to copy
one 16-bit sample to a receive buffer. When that buffer is full, the EDMA interrupts the CPU
and posts a TSK to run. This TSK processes (copies) the buffer to the transmit buffer. When
that transmit buffer is full, the EDMA copies one 16-bit sample at a time to the Xmt McBSP
and out through the D/A to your headphones.

 You’re Done

32 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

8 Lab 3: Using Client.pjt “Out of the Box”

Lab 3 – Using Client.pjt
� Goal: Open and run client.pjt

• Ping the DSK
• Use the telnet service
• Open a web page
• Proxy Settings? Ignore for TIDC.

� Time: 30 min

Use NDK 1.92, BIOS 5.31, CCS 3.3

8.1 Lab Overview:

• The goal of this lab is basically just to RUN the client.pjt example and observe what it can
do “out of the box”. This is the main example you might be modifying if you choose to use
the NDK in your development. Lab5 walks you through the steps of modifying client.pjt to
perform one service (in our example, just a DAEMON echo server).

• Please note that this lab uses the EVALUATION version of the NDK – version 1.92. If you
have purchased the NDK, you will need to pay close attention to the paths used in this lab –
your paths are most likely different than what are used in the procedures to follow.

 Getting Started With the C6000 Network Development Kit (NDK) 33

SPRAAX4

8.2 Open Client.pjt and Run It
1. Set the Installation Environment variable.
 Setting the following environment variable is a critical first step in using the NDK. This is one

of the top stumbling blocks for first-time users. None of the examples that ship with the NDK
will work unless this environment variable is set on the PC. This issue is documented, but we
wanted to make sure we highlighted this in the Getting Started Guide.

 Open up the PC’s Control Panel and double-click on “System”. Click on the “Advanced” tab.
Near the bottom, click on the “Environment Variables” button. In the bottom window, check to
see if the variable “NDK_INSTALL_DIR” is set to anything. If so, leave it alone. If not, click
the “New” button and type in the following:

 Variable name: NDK_INSTALL_DIR

 Variable value: C:\CCStudio_v3.3\ndk_1_92_eval\

 Click OK and close the control panel. Now, your examples that you paid $5000 for will
actually work. By the way, we are using the evaluation version of the NDK. If these files are
copied, they will work just fine. However, if used in a real application, the stack will reset
itself if it runs for 24 hours straight (can you say time bomb?). If you are using a newer
version of the NDK, please note that your directory structure might be slightly different.

Please note that if you purchased the NDK or have a different version of the NDK, the paths used in
this lab will be different. Just substitute your actual path for the paths listed in the steps below.

2. Connect C6455 DSK to the open Ethernet connection on the desktop or laptop.
 Connect your DSK to an open Ethernet connection on the laptop or desktop student

machine. The open connection IP’s address is set statically to 192.168.1.39. Desktop PCs
can use a standard Ethernet cable (usually). Laptops require a crossover cable (usually).

3. Examine the directory structure of the NDK.
 Remember, there are two downloads for the NDK: (1) platform-independent NDK package

that contains the libraries, stack, main files, servers, nettools, winapps; (2) the network
support package that is platform-DEPENDENT and contains the hardware specific libraries
and example code. In our case, we’re using the support package based on the C6455 DSK.

 Using Windows Explorer, go to the following directory:

 C:\CCStudio_v3.3\ndk_1_92_eval\packages\ti\ndk\example
 Here you will find the example code for the NDK. There is a “common” set of files and a

“board specific” set of files for each example.

34 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

 You should see the following under the \example directory:

 So, you can see the different examples available. Client.pjt, the example we plan to use is

located in the network folder. Open the network folder. You should see the following:

 Under \client, you can observe two directories: (1) common folder – which contains the

common files loaded by the platform-independent NDK download; (2) dsk6455 folder which
contains the platform-dependent files (again, in our case, it is the dsk6455). You will find the
project – client.pjt – in the dsk6455 directory.

4. Make a copy of the “example” folder.
 One of the other common mistakes that users make is that they modify code examples and

then want to go back to the original – which is typically overwritten during development. One
way to avoid major headaches is to make a copy of the example folder. So, let’s practice. In
Windows Explorer, go to the following directory:
 C:\CCStudio_v3.3\ndk_1_92_eval\packages\ti\ndk

 Do you see the folder “example”? In Windows, just drag and drop of copy of this folder AT
THE SAME LEVEL (beneath \ti\ndk). Name the copy of this folder “EXAMPLE_COPY”.
Again, just in case you make a mistake modifying an NDK file, you can easily replace the
original NDK file with your copy. It might (will) come in handy later.

Yes, we made a copy of the \example folder. However, to preserve the path names contained in the
original NDK project (client.pjt), we will actually use the ORIGINAL files and paths for the remainder of
this lab. The copy is only there in case something goes wrong. To say it again, when you open
client.pjt a few steps later, use this path (NOT your copy path):
..\ndk_1_92_eval\packages\ti\ndk\example\network\client\dsk6455\client.pjt

 Getting Started With the C6000 Network Development Kit (NDK) 35

SPRAAX4

5. Close everything, close CCS, power cycle the DSK and open the project.
 Close all existing projects. Close CCS. Power-cycle the DSK. Open CCS. Open the project

client.pjt under the directory path (this is the original path – NOT your directory copy):

 C:\CCStudio_v3.3\ndk_1_92_eval\packages\ti\ndk\example\network\client\dsk6455

6. Modify client.c to set static IP address for the DSK.
 Locate the source file client.c and open it. Client.c defaults to using DHCP for configuring the

IP addresses. We want to use a static IP address for the DSK, so we need to modify the
code:

 Modify line 65 to read: *LocalIPAddr = “192.168.1.41”;

 Modify line 66 to read: *LocalIPMask = “255.255.255.0”;

 Save client.c. (Note: ensure that 192.168.1.41 does not conflict with any other local
resources).

7. Build, load, run the NDK.
 Build and load the client project using the Rebuild All button:

 This build will take about a minute. Why? Because everything plus the kitchen sink is in

client.pjt – telnet service, DAEMON servers, HTTP service, etc. It’s all there right out of the
box. We don’t know how it all works yet, but we first need to play with it, then dive into the
details. Please note that although this project is called “client.pjt”, it is not just a client – it
contains all kinds of services (FTP, HTTP, telnet) and servers (data, echo, DAEMON, etc.).

 Click Run.

 The CCS Stdout window will show the service status of the IP address assigned to the DSK
as, “Network Added: If=1:192.168.1.41” (Note: If you modified the code in the step above,
this is EXACTLY what your Stdout window should look like except for maybe the MAC
address…)

 CCS Stdout pane should display something like this:
TCP/IP Stack Example Client
Using MAC Address: 00-0e-99-ff-ff-ff
Network Added: If-1:192.168.1.41
Service Status: Telnet : Enabled : : 000
Service Status: HTTP : Enabled : : 000
Link Status: 100Mb/s Full Duplex on PHY 1

 Write down the IP address of your DSK below:

 ______ . ______ . ______ . ______

Note: After the application has been assigned an IP address, the StackTest() will attempt to receive
data from the default IP address, which is the address assigned to the board.

36 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

8.3 Play With the NDK Services in Client.pjt
8. PING the DSK.
 Pinging the DSK is the simplest way to make sure all of your connections are working

properly. If the ping fails, you have a cable or hardware problem (or you’re not running
client.pjt on the DSK).

 So, first, make sure client.pjt is RUNNING on the DSK.

 Second, let’s see if the DSK is alive and operational:

 Open a Command Prompt window (DOS shell).

 Change directory to:
C:\CCStudio_v3.3\ndk_1_92_eval\packages\ti\ndk\winapps

 Type in: ping 192.168.1.41

 If it works, you’ll see a “reply” in the command window. If the request cannot connect to the
target, STOP, you have a problem. Nothing else will work.

9. Observe a data transfer using SEND.
 While in the command window, try:
 send 192.168.1.41 10

 It might take 5-10 seconds to start. Be patient. 10 is the number_between_updates. If the
connection is slow, you can reduce this to zero (i.e. don’t put any value there). You should
see a screen that looks like this:

C:\CCStudio_v3.3\ndk_1_92_eval\packages\ti\ndk\winapps>send 192.168.1.41 500
10 Sending 8192 bytes...passed - 8192000 bytes/s
20 Sending 8192 bytes...passed - 8192000 bytes/s
30 Sending 8192 bytes...passed - 12288000 bytes/s
…

 Hit <Esc> or Ctrl-Z to stop the send command. Ok, so we’ve ping’d the DSK and we’ve sent
data to it. What else can we do?

10. Observe an echo command.
 The following command will send data to the DSK and it will echo it back. Try:

 echoc 192.168.1.41 10

 You should see the results in the command window (in fact, they will FLY by...). Use <Esc>
to stop the echo. Wow, lot’s of stuff is already working and we didn’t program anything. We
don’t know a whole lot about WHAT is under the hood, but that’s ok for now.

 Getting Started With the C6000 Network Development Kit (NDK) 37

SPRAAX4

11. Run the telnet service.
 Ok, two more “pokes” at the NDK software and we’re almost done with this lab. In the

command window, type:
 telnet 192.168.1.41

 A window will open with the following information:

 Type “?” and hit <Enter>. This will give you a list of commands.

 Additional help for each command can be obtained by simply typing the command name, like
“ping” our “route”. Others have no parameters (like “mem” and “log”).

 Other commands can cause disconnection, like “quit” (closes the telnet connection), “reboot”
(reboots the DSP) and “shutdown” (which restarts the NDK stack).

 Type “quit” to close the telnet service.

12. Use the HTTP service.
 Open your web browser.

 Type in the board’s IP address: 192.168.1.41.

 You will see the main web page stored in the NDK board and provided by the embedded
web server (see picture).

 You can obtain some statistics by either selecting an option and clicking the button “Display
Selected Item” or clicking on one of the links at the end of the page. They differ by the
method used to provide content: while the button “Display Selected Item” accesses a stored
webpage in the server, the links at the end create each page dynamically using CGI scripts
(Common Gateway Interface).

38 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

13. Look at the StackTest() function located in client.c.
 Halt execution of client.pjt and open client.c. Find the StackTest() function (starting at about

line 91).

 We’re going to study these functions more in-depth in the discussion material, but we wanted
you to at least observe them for now. The next section (which is optional and FYI) contains a
more detailed explanation that you can read later.

 Locate the following function calls in StackTest():

 rc = NC_SystemOpen(NC_PRIORITY_LOW, NC_OPMODE_INTERRUPT);

 hCfg = CfgNew();

 CfgAddEntry(. . .);

 rc = NC_NetStart(hCfg, NetworkOpen, NetworkClose, NetworkIPAddr);

14. Let’s look at some of the NDK documents:
 In Windows Explorer, find the following folder:

 C:\CCStudio_v3.3\ndk_1_92_eval\packages\ti\ndk\docs\dsk6455

 Open Readme.htm.

 This contains some software installation instructions for the network support package for the
6455 DSK. If you go back under \docs, click on the stack folder. There are two .htm files in
there that contain lots of helpful information about the NDK.

 You’re Done

 Getting Started With the C6000 Network Development Kit (NDK) 39

SPRAAX4

9 Lab 4 – Combining the NDK and Audio Lab

Lab 4 – Combine NDK & Audio App
� Goal: Combine NDK & Audio App

• Add audio app source files
to client.pjt

• Make a few modifications so
both of projects work
independently

• Build, load, run, verify
operation

� Time: 30 min

Use NDK 1.92, BIOS 5.31, CCS 3.3

9.1 Lab Overview:

The goal of this lab is to combine an NDK example (client.pjt) and the audio application from
lab6B. The basic steps for combining an existing application into the NDK environment are
basically the same for any application. We picked lab6B because the audio sounds the best (no
filter). Some of the entire process has been done for you and placed in a “starter” directory.
These steps are documented and you will have a chance to analyze what was done prior to
going through the rest of the procedure yourself.

The reason this is a good project to attempt is to determine what resources and files might
conflict when you add the two projects together. We will walk you through each change and why
they need to be made.

40 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

9.2 Introduction
1. How to integrate an application with the NDK.
 There are two methods for integrating an existing application with the NDK: (1) add your

application files to the NDK environment; (2) add the NDK environment and files to your
system.

 While both can be accomplished, it is easier to add your application to the NDK’s
environment for one main reason: you know your application better than the NDK – so if you
forget some hook or task or file, it is easier to catch if it is an application file vs. some
obscure NDK task that you forgot to add. So, in the future, save yourself some headaches
and start with an NDK example, add your system files and modify from there.

 In a nutshell, when you combine two projects (yours and the NDK’s), the following needs to
occur:

¾ add all application source files to the NDK example project (e.g. client.pjt)

¾ port all DSP/BIOS settings from your application .tcf file to the NDK’s .tcf file
(dsk6455.tcf)

¾ change project options to include any CSL libraries used in your application

¾ modify your applications source files to use new headers

¾ remove any conflicts that occur (this is a big variable – could be interrupts, cache, system
resources, memory usage, etc.)

 We plan to go through each of these steps in this lab. Some have already been done for you,
but some you will need to do yourself.

9.3 Modify Client.pjt to Include Application Files/Libraries
2. Close Code Composer Studio (CCS) and power cycle the board.

3. Copy audio files to same directory as client.pjt.
 Our “application” is an audio pass-through built using DSP/BIOS tasks, EDMA, McBSP and

a hardware interrupt. This code is the solution for lab6B of the IW6455 4-day workshop with
one modification (explained later).

 Open two Windows Explorer windows – one each for the following folders:
 C:\CCStudio_v3.3\ndk_1_92_eval\packages\ti\ndk\example\network\client\dsk6455

 C:\IW64x+\labs\starter\NDK_audio_starter

 Copy the audio application files from the \NDK_audio_starter directory to the directory
containing client.pjt. Overwrite the file dsk6455.tcf. This is the textual configuration file (tcf)
that has been modified slightly to speed up this lab. You’ll have a chance to view these
changes in a few minutes.

 Getting Started With the C6000 Network Development Kit (NDK) 41

SPRAAX4

4. Open CCS and add the application files to client.pjt.
 Open CCS. Open the project client.pjt located in the following directory:
 C:\CCStudio_v3.3\ndk_1_92_eval\packages\ti\ndk\example\network\client\dsk6455

 Select:

 Project → Add Files to Project…

 and add the following application source files to client.pjt (you can ctrl-click each one and
add them all at the same time):

¾ edma.c

¾ edma_int_dispatcher.c

¾ main.c

¾ mcbsp_aic23.c

¾ scr_priority.c

¾ tasks.c

5. Add CSL and BSL library files (for audio app) to the project
 The audio pass-through lab required two library files (a Chip Support Library – CSL – file and

a Board Support Library – BSL – file). Right-click on the Libraries folder in the project and
select Add Files to Project. Browse and add the following library files:

¾ C:\IW64x+\csl_6455_v3.00.10.02\csl_c6455\lib\csl_C6455.lib

¾ C:\CCStudio_v3.3\boards\dsk6455_v2\lib\dsk6455bsl.lib

 When you merge your own application with the NDK, you’ll need to add the libraries used in
your application to the example NDK project.

6. Add search paths for library include files
 The libraries need include files. We need to add these paths to the “include search path”. To

add two new search paths, select:
 Project → Build Options → Compiler Tab → Preprocessor Category → Include Search Path

 At the end of the existing paths, type a semicolon “;” and then add the following two paths
with a semicolon between them:

 C:\IW64x+\csl_6455_v3.00.10.02\csl_c6455\inc;

 C:\CCStudio_v3.3\boards\dsk6455_v2\include

 Click OK to save the changes.

7. Remove the source file dsk6455.c
 This source file that comes with the NDK conflicts with the BSL library from Spectrum Digital.

Both of them are not needed. So, if your application uses a board support library, add the
library you’ve been using and remove the one provided by the NDK.

 Right click on the source file dsk6455.c and select Remove From Project.

42 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

9.4 Modify Source Files
 There are 3 main areas we need to focus on: (1) replacing the #include for the header file

automatically generated by CCS (the NDK uses one name, your application uses a different
one); (2) we currently have two main() routines – one has to be eliminated; (3) a conflict may
exist regarding the hardware interrupt used by the NDK and the application.

8. Make changes to #include in application source files.
 In three files – main.c, edma.c, tasks.c – you can find a #include at the top of the file. Open

the source file main.c and look at the first #include:
 #include "dsk6455cfg.h"

 All three application source files noted above used the following #include statement:
 #include "audio_appcfg.h"

 This is because the name of the .tcf file for the audio application was “audio_app.tcf”. This
header file is automatically generated by CCS and named after the .tcf file. Now that we’re
using the NDK’s .tcf file (dsk6455.tcf), we needed to change the #include statements in our
application source files. All three files have already been changed for you. The point here
was to observe it and note that this change is necessary and why.

9. Erase one of the main() functions.
 Our application had a main() function and so does the NDK. Because both our application

and the NDK require DSP/BIOS, both main() functions return to the DSP/BIOS scheduler. In
fact, the NDK’s main() is empty. We can’t have two, so let’s delete the NDK’s main()
function.

 In the source file client.c (which contains the stack startup and configuration of the NDK
services), locate main() – about line 76. Remove the entire main() function from client.c.

 Verify that the IP address and mask values are correct in client.c (these should have been
set properly in a previous lab – just double-checking):

 Ensure line 65 reads: *LocalIPAddr = “192.168.1.41”;

 Ensure line 66 reads: *LocalIPMask = “255.255.255.0”;

 Save client.c. and close.

 Getting Started With the C6000 Network Development Kit (NDK) 43

SPRAAX4

10. Remove hardware interrupt conflict.
 Just by chance, the audio application author used hardware interrupt #5 for the EDMA

interrupt to the CPU (there are 12 available CPU interrupts numbered 4-15) which conflicts
with the NDK’s EMAC interrupt. To the author’s knowledge (which is very suspect anyways),
there is no documentation of which interrupt the NDK/EMAC uses. So, after debugging the
problem, the author discovered that the NDK and audio application used the SAME interrupt
(is that called Murphy’s law or just plain bad luck?).

 So, be forewarned – the NDK uses CPU interrupt #5 for the EMAC interrupt to the CPU. This
is actually set in an NDK source file, so it could be changed. However, we’ll leave the NDK
files alone and change our application to use interrupt #6 instead.

 Let’s see where the NDK sets this interrupt. Open the NDK source file dsk6455init.c. Find
the function: C6455EMAC_getConfig() – about line 62. Observe the following line of code:

 *pIntVector = 5;

 It is not intuitively obvious and this one fact alone may save you a day or two of pulling your
hair out (the author of this lab is now bald you know). This value “5” in the code above is
used in the EMAC driver to “plug” the interrupt vector table with the name of the EMAC’s ISR
function. This is a dynamic way of configuring interrupts.

 Close this file without making any changes.
 Our audio application uses a static way of configuring interrupts inside the .tcf file. Let’s take

a look at which interrupt it currently uses.

 In the project window, expand the folder DSP/BIOS Config. Open the file dsk6455.tcf. Click
on the + next to Scheduling and next to HWI. You can now see the list of CPU interrupts.
Right-click on HWI_INT5 and select Properties. This is exactly what the audio application
hardware interrupt looks like. We know now that this resource (HWI_INT5) conflicts with the
EMAC interrupt. We need to copy these properties to interrupt #6 (or any interrupt other than
5) to avoid the conflict.

 Go to the next page…

44 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

 Note the settings for HWI_INT5:

 interrupt selection number: 24 (this is for the EDMA interrupt to the CPU)

 function: _edma_int_dispatcher (this checks to see which EMDA channel caused the
interrupt)

 Dispatcher: check box “Use Dispatcher”

 Dispatcher: Arg = _hEdmaModule
 See the pics below:

 First, with the HWI_INT5 properties open, clear all settings so we don’t confuse the compiler.
For HWI_INT5, type in the “function” as HWI_unused. Also, click on the Dispatcher tab and
make sure “Use Dispatcher” is unchecked.

 Close HWI_INT5.

 Right-click on HWI_INT6 and select Properties. Modify the properties to use the same
settings as the pictures above.

 Click OK and save the .tcf file.
 In main.c, about line 64, there is a line of code that enables individual interrupts (int #5):
 C64_enableIER(C64_EINT5);

 Change the value to C64_EINT6. This will enable interrupt #6. You have now changed the
application to use interrupt #6 instead of #5. Close and save main.c.

 Getting Started With the C6000 Network Development Kit (NDK) 45

SPRAAX4

9.5 Port DSP/BIOS Settings From Application to NDK
 The audio application makes extensive use of DSP/BIOS. All of these settings are done in

the application’s .tcf file. Because we can only have one .tcf file, we must port all the settings
from the audio application into the NDK’s .tcf file – dsk6455.tcf.

 All of these changes have been done for you in the starter .tcf file, so the goal here is to
observe the modifications and understand their implications.

 We will go right down the list in the .tcf file in order and examine what was ported.

11. In the project window, open dsk6455.tcf.

12. Under System Settings, observe the cache and memory settings.
 Click on the + next to System. Right-click on Global Settings and select Properties. Click on

the 64PLUS tab. Notice that L2 cache is set to 256K and the DDR2 memory area is set as
cacheable (MAR 224-255 is set to 0x0000FFFF). The NDK requires some L2 cache, so we
simply maxed it. You could use less if necessary – see the NDK User Guide for more details
on this.

 Click Cancel to close the Properties window. Then click on the + next to MEM. Right-click on
IRAM and select Properties. Notice the IRAM length change to 0x001C0000 (vs.
0x00200000 which is standard). This was done to make room for the 256K of L2 cache.

13. Observe Instrumentation settings.
 Click on the + next to Instrumentation. If you had any LOG or STS objects in your

application, you would need to port them over. LOG is used, for example, for LOG_printf()
statements; STS are used for benchmarking areas of code. Our audio application used
neither, so no porting was necessary.

14. Observe Scheduling settings.
 Click on the + next to Scheduling. Click on the + next to PRD. Right click on the PRD object

PRD_waitPRD and select properties. The audio application uses a periodic function to
toggle an LED on the DSK. The object PRD_waitPRD is used to toggle the LED every
500ms. Just keep in mind that whatever settings your current application uses, they must be
ported to the NDK’s .tcf file.

 Click on the + next to TSK. The audio application used two TSKs: (1) TSK_DipLED to toggle
the LED; (2) TSK_processBuffer to process the audio samples (copy them from the receive
buffer to the transmit buffer). TSK priorities can be an issue with the NDK. Generally, you
can leave your priorities the same when you port your application to the NDK. However, if
something is not working properly, it might be an issue of priority.

 Click on the + next to Synchronization. Click on the + next to SEM. The audio application
used 3 semaphores: (1) rcvBuffReady; (2) xmtBuffReady; (3) waitPRD. The rcv/xmt
semaphores are for signaling the Scheduler when the EDMA has finished receiving or
transmitting a buffer of audio data. waitPRD is used to signal the TSK to toggle the LED.

46 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

9.6 Build, Load and RUN !
 Well, it’s show time. Let’s see if we have any build errors. If so, we’ll fix ‘em and then run the

project to see if both applications work side by side.

15. Rebuild All.
 Click the Rebuild All button. Again, it will take a while because we have every NDK service

running and enabled. In the optional lab that follows, it takes you through the steps to trim
the NDK down to a single service.

 Did you get any errors? If so, you’ll need to fix them. If you struggle for more than 5 minutes,
ask your instructor for help.

 If you have the “Load Program After Build” option set, the .out file should have loaded. If not,
select:

 File → Load Program

 and load the file: \dsk6455\bin\client.out. If your .out file does not load, always check to make
sure you are connected to the board (look in the lower LH corner of the CCS window – does
it say “Connected” or “Not Connected”?). Use <ALT-C> to connect if needed.

16. Get some music playing.
 There should be a shortcut to some .mp3 files on the desktop. Click on one of the songs

which will open up Windows Media Player. Make sure that Play → Repeat is on (so the
music just doesn’t stop on you). If there is not shortcut on the desktop, use Windows
Explorer, navigate to C:\IW64x+\music and click on a song.

17. Run the code.
 Click the Run button. You should see the STDOUT screen show a proper link status (as in

the previous lab).

 Make sure your headphones are connected – do you hear the music playing? If so, the audio
code is running fine. If not, there is a mistake somewhere.

 If the audio is running fine, open a DOS command window and navigate to:
 C:\CCStudio_v3.3\ndk_1_92_eval\packages\ti\ndk\winapps

 Type in:
 echoc 192.168.1.41 10

 Do you see data being echoed back to the PC? If not, something is amiss. If so, you have
successfully integrated an application with the NDK and they are both running side by side.
Press ctrl-Z or <ESC> to stop the echo. Close the command window.

 You’re Done

 Getting Started With the C6000 Network Development Kit (NDK) 47

SPRAAX4

10 Modifying Client.pjt
When you purchase the NDK, the best way to get started is to use one of the examples provided
– namely client.pjt. This section provides a step by step procedure for modifying the contents of
client.pjt. In this example, we chose to trim the NDK to only perform a DAEMON echo server. In
your application, you might choose just to leave the HTTP service or telnet. The practice of
modifying client.pjt will be similar.

This will help you understand which source files and libraries are absolutely essential and which
are not.

10.1 Deleting Client.pjt Source Files

Shown below, we plan to remove the telnet and HTTP services and some sockets programming
server files.

Client.pjt – Console, html, servers
� In this example, we are not using sockets programming (we will later).

There is a built-in DAEMON server that will provide our simple echo.
� So, there are many services (source files and code) that we can delete.
� Let’s take this step by step…

Remove console source files
• user prompt when running telnet service
• remove: console.c, con???.c

1

Remove html content-related files
• html, web page service
• remove: webpage.c, cgiparse.c, cgiparsem.c,

2

Remove server files
• echosrv.c, datasrv.c, nullsrv.c,

oobsrv.c,
• These are written using sockets

programming instead of DAEMON interface

3

48 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

10.2 Client.pjt – Modifying Newservers.c

In newservers.c file, we’ll remove the unused servers and leave the echo server.

Client.pjt – Modify newservers.c
� To perform a simple echo (using the DAEMON server), we no longer

need the following servers: data, null, oob (in file newservers.c)

Remove the unused servers
• dtask_tcp_datasrv
• dtask_tcp_nullsrv
• dtask_tcp_oobsrv

4

Next, we’ll modify client.c. But first, let’s look at the client.c source code…

Note: you can delete everything from the _datasrv function shown
above all the way to the end of the code in newservers.c.

 Getting Started With the C6000 Network Development Kit (NDK) 49

SPRAAX4

10.3 Client.c Source File – Overview

Client.c Source file - Overview
main() {}
StackTest() { // Boots up the stack and runs forever

}
NetworkOpen() {

// initializes the user-defined applications (TSKs)
}
NetworkClose() {

// kills the user-defined applications (TSKs)
}
NetworkIPAddr() {

// call back function from the ethernet driver
}
CheckDHCPOptions() {

// call back function from the services init routines
}

• Prepares for system startup (NC_SystemOpen)
• Creates a new network configuration (CfgNew)
• Assigns local IP Address
• Initializes services (http, telnet)
• Fires up the stack (NC_NetStart)

� StackTest() is the main and most
important function in client.c.
It is responsible for configuring and
booting up the stack

� NetworkOpen/Close initialize/kill the
user-defined applications (TSKs)

� NetworkIPAddr, CheckDHCPOptions
are callback functions to ensure
connectivity

Next, we’ll modify client.c to delete code
that is not used for the simple echo
example…

10.4 Client.c – Remove Telnet Service

Client.c – Remove Telnet Service
� We have already removed the services such as telnet, http, etc.
� Therefore, we need to remove the calls to these services in client.c
� In StackTest(), let’s remove the telnet code first…

Remove call to telnet service in client.c
• Remove config handler to the telnet service:
CI_SERVICE_TELNET telnet;

• Remove config code starting at (this line)…
bzero(&telnet, sizeof (telnet));

• …to this line (6 lines of code, see example below)
CfgAddEntry (hCfg, CFGTAG_SERVICE, ..0);

5

50 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

10.5 Client.c – Remove HTTP Service

Client.c – Remove HTTP Service
� Now, we can remove the http configuration steps and the calls

to removed functions in StackTest()….
Remove http service in client.c
• Remove config handler to the telnet service:
CI_SERVICE_HTTP http;

• Remove file allocation system (to hold the
webpages) – initialized by this function:
AddWebFiles();

• Remove authentication system for webpages
starting at the bracket BEFORE this line…
CI_ACCT CA;

• …to include the bracket AFTER this line:
CfgAddEntry (hCfg, CFGTAG_ACCT, …0);

• Remove config code starting at this line…
bzero(&http, sizeof (http));

• …to include this line: (total of 4 lines of code):
CfgAddEntry (hCfg, CFGTAG_SERVICE, ..0);

6

10.6 Client.c – Remove “USE_OLD_SERVERS”

Client.c – Remove “USE_OLD_SERVERS”
� For legacy purposes, there is a #define for USE_OLD_SERVERS. We

can simply remove this entire #if / #else code.
� This causes confusion, because the original client.c has two versions

of NetworkOpen()/Close() (because of this #if code). So, let’s delete it:

7 • Remove #if USE_OLD_SERVERS code. Remove
the ~50 lines of code from…

#if USE_OLD_SERVERS (near line 270 or so)

• …to (and including) the #else 50 lines further down
• Remove last #endif after the function:
NetworkClose();

• Remove the following #define (near top of code):
#define USE_OLD_SERVERS 0;

 Getting Started With the C6000 Network Development Kit (NDK) 51

SPRAAX4

10.7 Client.c – Remove Unused DAEMON Servers

Client.c – Remove Unused DAEMON Servers
� Remove the unused DAEMON servers (both the init and free calls)
� However, leave the DAEMON echo servers (that’s what we want to use)
� These are found in NetworkOpen() and NetworkClose()…

Remove unused DAEMON servers (init, free)
• Remove init for hData, hNull, hOob:

hData = DaemonNew(SOCK_STREAM,..3);
hNull = DaemonNew(SOCK_STREAMNC,..3);
hOob = DaemonNew(SOC_STREAMNC,..3);

• Remove free for hData, hNull, hOob:
DaemonFree(hData);
DaemonFree(hNull);
DaemonFree(hOob);

8

10.8 Client.c – Clean Up

Client.c – Cleaning Up
� Clean up a few misc calls because we have removed some services
� Specifically: ConsoleClose(); RemoveWebFiles, and a few handles…

Cleanup some unused code

• Remove:
RemoveWebFiles(); (near bottom of StackTest)
ConsoleClose(); (in NetworkClose())

• Remove handles that are not used
(just above the NetworkOpen() fxn)
static HANDLE hData, hNull, hOob;

9
• Near the middle of StackTest(), remove TCP/UDP

buffer/timing config options starting at the first line
of code that says…
rc = 8192;

…to include this line:
#endif after CfgAddEntry(hCfg, CFGTAG_IP, …0);

Note: Original .text size = 178KB
Stripped down = 120KB

52 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

11 Lab 5 – Modify Client.pjt

Lab 5 – Modifying Client.pjt
� Goal: send a packet from the PC to the DSK and then echo it back
� Modify client.pjt to ONLY do the echo using the DAEMON server
� Verify that data is sent to the DSK and that it is echoed back to the PC
� Time: 30min

11.1 Lab Overview:

• Now that we have had a chance to play with client.pjt, it’s time to learn how to MODIFY it to
do only what we want it to do. Let’s assume for the moment that we don’t need the HTTP,
console and telnet services. We want to simply have the DSK be a server (a DAEMON
server) and echo back what we send it. Well, there is a ton of code we need to strip. What
can we remove and what needs to stay? The answer lies ahead as you go through the
steps….

• Keep in mind that this is ONLY an example. We arbitrarily chose to strip down client.pjt to
only contain a DAEMON echo server. You might choose to only have the HTTP service
running or a few of the services. Either way, this will give you a feel for what you can
remove and how the client.pjt is built.

• The slides from the previous discussion are intentionally duplicated below so that you don’t
have to refer back in the document to view the lab steps. Plus, it adds a few pages that
make the authors look like they created a really BIG document (more bonus money, more
solid look/feel, etc.). By the way, what is “bonus” anyway? I used to know, but the definition
slips my mind these days…

 Getting Started With the C6000 Network Development Kit (NDK) 53

SPRAAX4

11.2 Modify Client.pjt
1. Introduction.
 This lab will basically follow the discussion material exercise we covered regarding modifying

client.pjt. We discussed what needs to be kept and why and how to delete unused services.
The section was called “Client.pjt – your starterware”. It showed the 9 steps required to
modify client.pjt to leave on the basic DAEMON server. Your job will be to follow those steps
in order to come up with the next solution. Once you’re done, we’ll use Ethereal (now,
replaced by Wireshark) to observe the results.

2. Open Client.pjt
 As before, open client.pjt. This may be your “combined” app+NDK or just the NDK. The

procedure is the same. The slides shown in the material are duplicated here for your
convenience. As a little tutorial, the following steps show some screen captures to check
your work at specified points to make sure nothing is deleted that is needed. So, move on to
the next step.

3. Steps 1-3 (remove console, html, server files)
 Do steps 1-3 as follows:

Client.pjt – Console, html, servers
� In this example, we are not using sockets programming (we will later).

There is a built-in DAEMON server that will provide our simple echo.
� So, there are many services (source files and code) that we can delete.
� Let’s take this step by step…

Remove console source files
• user prompt when running telnet service
• remove: console.c, con???.c

1

Remove html content-related files
• html, web page service
• remove: webpage.c, cgiparse.c, cgiparsem.c,

2

Remove server files
• echosrv.c, datasrv.c, nullsrv.c,

oobsrv.c,
• These are written using sockets

programming instead of DAEMON interface

3

 When you are finished with steps 1-3, your project files should look like this (unless you have
application files in there as well):

54 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

 Double-check to make sure the Source files listed above are the only ones you have left

(other than the maybe any extra application files). If you made a mistake, go back and add
the necessary files back to the project. All libraries should already be in place – all are
important and none can be deleted.

 Getting Started With the C6000 Network Development Kit (NDK) 55

SPRAAX4

4. Step 4 – remove the unused servers.

Client.pjt – Modify newservers.c
� To perform a simple echo (using the DAEMON server), we no longer

need the following servers: data, null, oob (in file newservers.c)

Remove the unused servers
• dtask_tcp_datasrv
• dtask_tcp_nullsrv
• dtask_tcp_oobsrv

4

Next, we’ll modify client.c. But first, let’s look at the client.c source code…

Note: you can delete everything from the _datasrv function shown
above all the way to the end of the code in newservers.c.

 Open the file newservers.c. You need to remove the datasrv, nullsrv and oobsrv. Remove
the code for these servers. Each of these servers starts out with code that looks like this:

 Remove the entire function for all 3 servers listed above. Basically, you start with the

tcp_datasrv code shown above and delete everything to the end of the file. Save your
changes.

56 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

5. Step 5 – remove the telnet service and calls/configuration for it.

Client.c Source file - Overview
main() {}
StackTest() { // Boots up the stack and runs forever

}
NetworkOpen() {

// initializes the user-defined applications (TSKs)
}
NetworkClose() {

// kills the user-defined applications (TSKs)
}
NetworkIPAddr() {

// call back function from the ethernet driver
}
CheckDHCPOptions() {

// call back function from the services init routines
}

• Prepares for system startup (NC_SystemOpen)
• Creates a new network configuration (CfgNew)
• Assigns local IP Address
• Initializes services (http, telnet)
• Fires up the stack (NC_NetStart)

� StackTest() is the main and most
important function in client.c.
It is responsible for configuring and
booting up the stack

� NetworkOpen/Close initialize/kill the
user-defined applications (TSKs)

� NetworkIPAddr, CheckDHCPOptions
are callback functions to ensure
connectivity

Next, we’ll modify client.c to delete code
that is not used for the simple echo
example…

Client.c – Remove Telnet Service
� We have already removed the services such as telnet, http, etc.
� Therefore, we need to remove the calls to these services in client.c
� In StackTest(), let’s remove the telnet code first…

Remove call to telnet service in client.c
• Remove config handler to the telnet service:
CI_SERVICE_TELNET telnet;

• Remove config code starting at (this line)…
bzero(&telnet, sizeof (telnet));

• …to this line (6 lines of code, see example below)
CfgAddEntry (hCfg, CFGTAG_SERVICE, ..0);

5

 Getting Started With the C6000 Network Development Kit (NDK) 57

SPRAAX4

 Open client.c. Find the StackTest() function. First, remove the call to the config handler for
the telnet service (as show in the discussion material). Then, remove the config code that
looks like this:

6. Step 6 – remove the HTTP service and calls/configuration for it.

Client.c – Remove HTTP Service
� Now, we can remove the http configuration steps and the calls

to removed functions in StackTest()….
Remove http service in client.c
• Remove config handler to the telnet service:
CI_SERVICE_HTTP http;

• Remove file allocation system (to hold the
webpages) – initialized by this function:
AddWebFiles();

• Remove authentication system for webpages
starting at the bracket BEFORE this line…
CI_ACCT CA;

• …to include the bracket AFTER this line:
CfgAddEntry (hCfg, CFGTAG_ACCT, …0);

• Remove config code starting at this line…
bzero(&http, sizeof (http));

• …to include this line: (total of 4 lines of code):
CfgAddEntry (hCfg, CFGTAG_SERVICE, ..0);

6

 In StackTest(), remove the HTTP code specified in the above material.

58 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

7. Step 7 – remove the #if USE_OLD_SERVERS code

Client.c – Remove “USE_OLD_SERVERS”
� For legacy purposes, there is a #define for USE_OLD_SERVERS. We

can simply remove this entire #if / #else code.
� This causes confusion, because the original client.c has two versions

of NetworkOpen()/Close() (because of this #if code). So, let’s delete it:

7 • Remove #if USE_OLD_SERVERS code. Remove
the ~50 lines of code from…

#if USE_OLD_SERVERS (near line 270 or so)

• …to (and including) the #else 50 lines further down
• Remove last #endif after the function:
NetworkClose();

• Remove the following #define (near top of code):
#define USE_OLD_SERVERS 0;

 This is legacy code that is not needed. There are currently TWO NetworkOpen() and
NetworkClose() functions. This can get confusing. So, to avoid this confusion, let’s remove
the set that we are NOT using.

 Locate the #if USE_OLD_SERVERS (near line 270 or so) and delete from this #if all the way
down (about 50 lines) to (and including) the next #else. Delete. Then, scroll down just below
the NetworkClose() function and delete the #endif.

 Now, near the top of the code, remove the #define for USE_OLD_SERVERS. Save your
changes.

 Getting Started With the C6000 Network Development Kit (NDK) 59

SPRAAX4

8. Step 8 – remove the unused DAEMON servers.

Client.c – Remove Unused DAEMON Servers
� Remove the unused DAEMON servers (both the init and free calls)
� However, leave the DAEMON echo servers (that’s what we want to use)
� These are found in NetworkOpen() and NetworkClose()…

Remove unused DAEMON servers (init, free)
• Remove init for hData, hNull, hOob:

hData = DaemonNew(SOCK_STREAM,..3);
hNull = DaemonNew(SOCK_STREAMNC,..3);
hOob = DaemonNew(SOC_STREAMNC,..3);

• Remove free for hData, hNull, hOob:
DaemonFree(hData);
DaemonFree(hNull);
DaemonFree(hOob);

8

 In client.c, locate the NetworkOpen() and NetworkClose() functions. In NetworkOpen()
remove the DaemonNew() calls for the other servers (i.e. leave hEcho and hEchoUdp alone
– delete the inits for the rest). In NetworkClose(), do the same for the DaemonFree() calls.
Follow the directions for step 8 in the discussion material. Here, we are leaving the
DAEMON echo servers which is what we plan to use for echoing data back from the DSK.

60 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

9. Step 9 – cleanup unused code.

Client.c – Cleaning Up
� Clean up a few misc calls because we have removed some services
� Specifically: ConsoleClose(); RemoveWebFiles, and a few handles…

Cleanup some unused code

• Remove:
RemoveWebFiles(); (near bottom of StackTest)
ConsoleClose(); (in NetworkClose())

• Remove handles that are not used
(just above the NetworkOpen() fxn)
static HANDLE hData, hNull, hOob;

9
• Near the middle of StackTest(), remove TCP/UDP

buffer/timing config options starting at the first line
of code that says…
rc = 8192;

…to include this line:
#endif after CfgAddEntry(hCfg, CFGTAG_IP, …0);

Note: Original .text size = 178KB
Stripped down = 120KB

 In client.c, follow Step 9 from the discussion material and remove the unused code as
specified. Save your changes.

10. Build and load the new modified client.pjt.
 Build and load and fix any errors that occurred. If there are warnings about variables that are

unused, you didn’t delete everything properly – go back and delete the init of those variables
and do an incremental build. Once you have a clean build (and load), move on…

11. Run Ethereal (actually, it’s now called Wireshark).
 Ethereal is a public domain newtwork analyzer (available for free at www.ethereal.com).

 Minimize CCS and locate the desktop icon for Ethereal. Double-click to run the program.
Select Capture -> Interfaces. If more than one network interface is present on the machine,
click the Capture button associated with the PC’s IP address (192.168.1.39). Wait for 10
seconds and observe the network traffic flow. There shouldn’t be any because we haven’t
run the code yet. There might be a few stray UDP packets – but no TCP packets. Leave the
ethereal capture screen up on your display.

Update: as of 2Q08, Ethereal has been replaced by Wireshark – available for free at
http://www.wireshark.org/. In these labs, you can actual use any network analyzer that you have (or
can download).

 Getting Started With the C6000 Network Development Kit (NDK) 61

http://www.ethereal.com/
http://www.wireshark.org/

SPRAAX4

12. Run Client.pjt.
 Click the Run button in CCS to run the new client.pjt. The DSK will now be running a simple

DAEMON echo server. We now need to send some data to the DSK and see if it echos
back.

 Open a command window. Resize this window so that you can see both the Ethereal (uh,
Wireshark) capture screen AND the command window. In the command window, go to the
\winapps directory and type:
 echoc 192.168.1.41 10

 You should immediately see the captured data show up in Ethereal (that’s Wireshark now).
After 5 seconds, click Stop and check the network traffic.

 Ok, so we modified client.pjt to do just a simple DAEMON echo – not that difficult. In the next
lab, we’ll use socket programming APIs to send data from the DSK to the PC and use
Wireshark (now that’s better) to capture it.

13. Peruse the .tcf file.
 How is this client.pjt system configured? What memory areas (external, internal) are

allocated and why? Is cache turned on?

 Open the .tcf file and observe the following: memory areas, where each section is allocated,
scheduler – TSKs and PRDs, cache sizes, etc. Close the .tcf when done.

11.3 Save Your Solution and Close CCS
14. Save the following files using Windows Explorer:
¾ \example\network\client\dsk6455\bin\client.out (name it: client-lab5.out)

¾ \example\tools\common\servers\newservers.c (name it: newservers-lab5.c)

¾ \example\network\client\common\client.c (name it: client-lab5.c)

¾ Into the following directory:

 C:\IW64x+\solutions_student\Lab5

 You may need to create this directory using Windows Explorer and then copy your files.

 Close CCS.

 You’re Done

62 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

12 Sockets Programming
In this section, we will help you understand how sockets programming works. If you have done
sockets programming in the past, this information will look very familiar to you. Typically, when
you have an O/S like Unix or Linux, you have a kernel and a file system. In the NDK, we have a
kernel – it is DSP/BIOS. However, BIOS doesn’t have a file system. So, if you’re familiar with
sockets programming from an O/S that used a file system, you may want to pay particular
attention to how we manage a file system in the NDK. Otherwise, the APIs and how sockets
programming works is the same.

If you’re new to sockets programming, this introduction will help, but will not suffice to get you up
to speed completely. Further training on this topic is most likely needed.

12.1 What is a Socket?

A socket is the interface between the application code and the TCP/IP stack. Literally, it is an
intelligent buffer that contains information regarding a live connection – for example, the FTP
application is using port “x” at IP address “y” and is currently active. The socket also contains
pointers to where the data is stored.

What is a Socket?

MPEG H.264 FTP SMTP HTTP DNS

Voice/Video Data

¾ Applications run on the client and the server
¾ How does the application program the lower layers?

Client/Server APPLICATION

IP“Network
Layer”

“Transport
Layer”

EMAC

“Application
Layer”

TCP UDP

“Data
Layer”

PHY“Physical
Layer”

¾ Either manually or via SOCKETS PROGRAMMING…

SOCKET
Socket
• An intelligent buffer that connects

the application to the transport
layer.

• Network Development Kit
(NDK) provides standard
sockets programming services

• If you’ve done sockets
programming before, all the APIs
will be familiar to you

• Reference: SPRU524

TCP/IP
“Stack”

Packet

 Getting Started With the C6000 Network Development Kit (NDK) 63

SPRAAX4

12.2 TCP – Sockets Programming APIs

Shown below is a basic TCP Sockets Programming Server/Client example. There are many
more APIs – we’re just showing the basic ones here.

First, the Server opens a socket (for every server you need a different socket). Then it binds the
socket to the IP address and the port number of the server. This really tells the world what kind
of a server it is (for example maybe an HTTP or FTP etc). Then it just waits and listen until it
receives something with the correct IP and port address.

On the client side, the client opens a socket (for example to try to get a web page). Then it
connects to the server IP address and the port number of the server.

The server then accepts the request from the Client and sends the requested data to the Client.
The client receives the packet and process the packet and sends a response to the Server that it
got the packet. (TCP is a “connected” protocol and therefore has handshaking involved – much
more reliable, but slower).

The server then receives the response so that it knows that the Client got the packet. If done,
then close the socket – if not, go back to listen.

We’ll see the actual code example for TCP shortly…

TCP Sockets Programming – APIs

socket()

bind()

listen()

accept()

send()

recv()

close()

socket()

connect()

send()

close()

recv()

“open a socket”

“sets IP addr & port
number of server”

“wait, listen, until it rcvs
correct IP/port addr”

“accept request”

“send data”

“response rcvd”

“connect to server
IP address”

“rcv & process pkt”

“send responses”

Server Client

PKT
XFR

TCP – “connected”, uses handshaking to make sure the data was received – slower, but reliable

64 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

12.3 TCP – Application Example (echosrv.c)

The slide below provides the overall picture of how things link together and what is required to
use sockets programming. The layers on the left are a shorthand view of the overall diagram a
few slides ago (from app to the PHY). These “icons” are duplicated in the other sections to show
which files modify these layers. Client.c is the example stack startup code that comes with the
NDK. It is responsible mainly for opening the system, configuring the services and starting the
stack. All of these functions are contained in the StackTest() routine (near the top of client.c).
Two other main responsibilities are to create the necessary BIOS TSKs using NetworkOpen().

Echosrv.c is actually the application – this is where the BIOS TSK is programmed. The first item
in any NDK TSK is fdOpenSession – this allocates the file descriptor (FD) environment that will
be used throughout the TSK. Note that each TSK has a prologue (executed once), a “forever”
loop (that can block on incoming data) and an epilogue (clean up code when session is closed).
Then, in echosrv.c, you see the sockets programming APIs such as socket (create a socket),
bind, listen, etc. These match the TCP flowchart shown previously.

Sockets programming requires a file descriptor environment to be created. fdOpenSession()
allocates the environment. ibits is a file descriptor set that contains 16 pointers to sockets – of
which two are shown in this diagram. The pointers are placed into the sets using the macro
FD_SET. The sockets contain the name of the socket plus other parameters such as IP
address, type of socket (TCP or UDP) and pointers to packet buffers. Sockets are allocated on
the heap (so they must be freed when not in use) and the actual packet buffers are in memory
configurable by the user. So, whenever you see “stcp”, this is “socket TCP” – just a name, but
that’s what we intended it to represent.

TCP – Application Example (Echosrv.c)

APP

SKT

TCP UDP

.I.P.

EMAC

PHY

� Server that echos back the data to the client
� To build this application, we need 3 major parts (stack startup/init, BIOS TSK,

and a file descriptor environment)
LAYERS CLIENT.C (STACK CFG/INIT) ECHOSRV.C (APP) FD Environment

APP

SKT

SKT

TCP UDP

.I.P.

EMAC

PHY

// Declarations

// Stack Startup – StackTest()

NC_SystemOpen()…

Cfg Services (echo)…

NC_NetStart (hCfg, …)…

// Create BIOS TSK for echo

hEcho = TaskCreate (echosrv,…);

…

void echosrv() {
// Declarations
// Prologue

fdOpenSession();
stcp = socket(…);
bind (stcp, …);
listen (stcp, …);

// Loop
FD_SET (stcp, &ibits);
fdSelect (.., &ibits, …);
accept (stcp, …);
recvnc (x);
send (x); //echo x

BIOS TSK

sudp

stcp
ibits
stcp
sudp
..

• Client.c is responsible for configuring services, stack startup and creating the TSK
• Echosrv.c is a BIOS TSK that creates/inits the socket and FD environment for

using sockets programming APIs (e.g. socket, bind, listen, etc.)
How is UDP different?

 Getting Started With the C6000 Network Development Kit (NDK) 65

SPRAAX4

12.4 File Descriptor (FD) Environment

Berkeley Software Distribution (BSD) is the Unix derivative distributed by the University of
California, Berkeley. The file descriptor environment is simply a directory structure to keep track
of open sockets and is a legacy standard from BSD. The table is created with fdOpenSession()
and the “sets” or “directories” in this table are, for example, ibits and xbits. The “sets” point to
active sockets (e.g. stcp and sudp).

fdOpenSession() allocates the file descriptor environment (table) (this is the root directory of the
file environment). See sec 3.1.2 of Programmer’s guide. The session holds the file descriptor
sets – only one session per task – and you can have as many file descriptor sets per session as
you desire.

fd_set (typedef) allocates space in the file descriptor environment to hold handles (pointers) to
the sockets. ibits is the name of the structure and it defaults to hold 17 items (16 pointers to
sockets + a count value of how many sockets are “registered”).

FD_ZERO clears the ibits structure. The FD_SET macro places the first socket (in this case,
stcp) into the file descriptor set.(stcp, &ibits). fdSelect() waits for live, active data to be presented
– until then, it blocks (just like SEM_pend). This is the BLOCKING part of the TSK.

The file descriptor environment also allows the application to report any errors through fdError().
The table that contains the error codes is located in a header file <serrno.h> located in the NDK
include directory.

File Descriptor (FD) Environment
� The NDK incorporates a simple file system to manage sockets. This is

inherited from BSD (Berkeley Software Distribution) FD environment

ECHOSRV.C (APP) FD Environment
APP

SKT

SKT

void echosrv() {
// Declarations
// Prologue

fdOpenSession();
stcp = socket(…);
bind (stcp, …);
listen (stcp, …);

// Loop
FD_SET (stcp, &ibits);
fdSelect (.., &ibits, …);
accept (stcp, …);
recvnc (x);
send (x); //echo x

BIOS TSK

sudp

stcp
ibits
stcp
sudp
..

• Allocates the file descriptor environment
(table). This is the root directory of the
file environment (SPRU532, Sec 3.1.2)

• Session holds the file descriptor sets –
e.g. ibits, xbits (declare as many as needed)

fdOpenSession(TaskSelf());

xbits
sxyz
..

cnt = 2

0

15

FD_SET (stcp, &ibits);

• Places the socket (e.g. stcp) into the file
descriptor set (ibits).

fdSelect (..,&ibits,..);

• Waits for live, active data to be presented –
until then, it blocks (like a SEM_pend).

Let’s take a deeper look into echosrv.c…

66 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

12.5 Echosrv.c – Deep Dive (1/4)

As you go through this discussion on the source file echosrv.c, it would probably be helpful to
open the file and view it while reading the following descriptions.

Sockets are declared as INVALID to begin with – this is standard procedure. Sin1 (socket in 1) is
a struct that is used to program the socket with the port # and IP address (on the next slide). We
already covered what fdOpenSession() does. The sockets are global handles that can be used
between child processes (other tasks that are spawned from the task that declared the socket).
This is not obvious because of the C language structure (local variables are usually not passed
to other functions without the word extern).

Relating back to the TCP flowchart, the first thing that occurs is the socket() API. AF_INET is
(address family Internet). SOCK_STREAMNC is the type of socket (streaming or datagram –
TCP uses streaming) and the IP protocol is TCP (vs. UDP, which uses datagram).

BIOS TSKs have 3 sections: prologue, loop and epilogue. The prologue runs ONCE (until it hits
the blocking function) when the TSK is dynamically created. The loop will then run and unblock
based upon the TSK’s priority and if the semaphore has been posted.

Echosrv.c (Deep Dive) 1/4

APP

SKT

TCP UDP

.I.P.

EMAC

PHY

LAYERS ECHOSRV.C (APP)
void echosrv () { //BIOS TSK

//Declarations

SOCKET stcp = INVALID_SOCKET;

SOCKET stcpactive = INVALID_SOCKET;

struct sockaddr_in sin1;

//Create FD environment

fdOpenSession(TaskSelf());

//Create the main TCP listen socket

stcp = socket(AF_INET, SOCK_STREAMNC,
IPPROTO_TCP);

� We’ll take a look at each part of echosrv.c in detail
� First, we show the declarations, creating the FD environment and socket

• sin1 (socket_in_1) is a struct that is used to init the socket with port # and IP address
• stcp is the listen socket (stcpactive gets created when data arrives)

TSK Prologue

 Getting Started With the C6000 Network Development Kit (NDK) 67

SPRAAX4

12.6 Echosrv.c – Deep Dive (2/4)

Bzero() zeroes out the sin1 structure. Sin1 is a structure that is used to write values to ANY
socket. Then, we set address family, size and port #. Port 7 is an echo port. Port 21 is FTP. Port
80 is HTTP, etc.

sin1 is the name of the structure – defines variable name sin1 of type struct sockaddr_in.

AF_INET name was inherited from BSD as a type to describe the IP address. This is the type of
addresses that are arriving on this socket (an IP type of address – if this arrives, it starts
listening). We’re creating a server, so we want to listen to ANY type of IP address on this socket.

If you want to listen only to a specific IP, you would write:

sin1.in_addr = inet_addr(“146.157.4.2”);

Bind() takes the structure (sin1) and writes it into the socket (stcp). This is where some of the
socket parameters are set (from the previous slide). This effectively binds the port (7) and IP
(any) to the socket (stcp). Now, we’re ready to listen. PSA is a cast of &sin1 – inherited from the
Berkley implementation.

Listen() specifies the socket (stcp). Sets stcp to the “listen” state. This is the end of the prologue
of a TCP TSK. (“1” specifies the max number of connections). Listen is the first part of the
handshake (it is a valid client, so move on). stcp is always listening. Stcpactive (later on) will be
the “active” or “busy” socket.

Echosrv.c (Deep Dive) 2/4

APP

SKT

TCP UDP

.I.P.

EMAC

PHY

LAYERS ECHOSRV.C (APP) TSK Prologue

� Next, we clear the socket structure (sin1) and set the socket parameters
(address family, size, port)

� Then, we bind the socket to the IP/port and start listening

• bzero clears the sin1 struct, then address family (any IP), size and port # are configured
• bind() binds port 7 to any IP (inits stcp), listen() puts stcp in listen state (handshake

w/client – if valid client, then move on).

//Set Port = 7, leaving IP address = Any

bzero(&sin1, sizeof(struct sockaddr_in));

sin1.sin_family = AF_INET;

sin1.sin_len = sizeof(sin1);

sin1.sin_port = htons(7);

//Bind socket

bind(stcp, (PSA) &sin1, sizeof(sin1));

//Start listening

listen(stcp, 1); END Prologue

68 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

12.7 Echosrv.c – Deep Dive (3/4)

Prior to FD_SET, you need to define ibits as type fd_set and zero ibits using FD_ZERO.
FD_SET places the socket (stcp) into the file descriptor set (ibits). This, again, is shown in the
diagram on the previous slide.

fdSelect() waits for initial data activity from the client (after the initial handshaking occurred in
listen()). The first value “4” is ignored. The 2nd value is for INCOMING ACTIVITY. The 3rd is for
outgoing activity. The 4th is for exceptions (out of band – OOB) and the last value is for timeout.
fdSelect is really a SEM_pend() with multiple semaphores (any activity on a socket in the file
descriptor set – ibits – for incoming, outgoing, etc.).

If (FD_ISSET(stcp, &ibits)) checks to see if there is activity on the specific socket we want –
stcp. The previous macro (fdSelect) could have been unblocked for any reason. We want to
make sure that it was unblocked for the specific reason of “activity on socket stcp”. If there is
activity on stcp, we make a copy of the current socket (stcp) so that stcp can be used elsewhere
and stcpactive (or you could call it stcpbusy) can continue processing data and send/receiving
data from the client. This is actually analogous to a ping/pong buffer scheme – i.e. one socket is
listening and the other is processing – for example, one buffer is being consumed while the
other is being written.

Accept() actually registers the new socket into the file descriptor set as well. Now, we have two
sockets in ibits (stcp, stcpactive). This is like having a “ping” “ping” buffer – they are the same –
one getting data and the other is still listening for other connections.

Echosrv.c (Deep Dive) 3/4

APP

SKT

TCP UDP

.I.P.

EMAC

PHY

LAYERS ECHOSRV.C (APP) TSK Loop

� Next, we place stcp into the ibits FD set and block (fdSelect) until data arrives
� If activity is on our socket (stcp), we accept the connection (create “active” skt)

• fdSelect() is similar to SEM_pend() with multiple semaphores. FD_ISSET checks to see
if the data activity is related to the specific TCP socket (stcp)

• accept() registers stcpactive (ibits) – used for data xfr, stcp continues to listen

for (;;) { // BIOS TSK LOOP

//Place main TCP socket in FD set

FD_SET(stcp, &ibits);

//Block until data activity

tmp = fdSelect(4, &ibits, 0, 0, 0);

//Test if connection is for our TCP skt (stcp)

if(FD_ISSET(stcp, &ibits))

//New connection - make copy of stcp socket

stcpactive = accept(stcp, (PSA)&sin1, &size);

 Getting Started With the C6000 Network Development Kit (NDK) 69

SPRAAX4

12.8 Echosrv.c – Deep Dive (4/4)

Recvnc (no copy) is a zero-copy macro. Cnt counts the bytes that are received. Recvnc has the
following parameters: active socket, pointer to receive data system buffer, flags, handle used to
free the pBuf.

Send() sends the data back to the client that sent us the data. This is an echo server. The user
could decide to process the data first before sending something back.

Recvncfree (hBuffer) frees the buffer allocated by recvnc back to the system. There are a limited
number of buffers that can be stored in the system heap, so this is a must.

This ends the deep dive into sockets programming. Again, for those users that are familiar with
sockets programming, the only possible addition is the creation and management of the file
descriptor sets. Everything else should seem familiar.

Echosrv.c (Deep Dive) 4/4

APP

SKT

TCP UDP

.I.P.

EMAC

PHY

LAYERS ECHOSRV.C (APP) TSK Loop

� Next, we receive the data sent by the client into a buffer pointed to by pBuf
� Because we are an echo server, we send back the rcvd data, then free the buffer

• recvnc() is a no-copy macro – cnt counts the #bytes received.
• send() echos the data back to the client (user could decide to process the data first)
• pBuf: receive data system buffer; hBuffer: used as a handle to free pBuf

//Rcv data available on active connection

cnt = (int)recvnc(stcpactive,

(void **)&pBuf, 0, &hBuffer);

// For echo, whatever we rcvd, we send back

send(stcpactive, pBuf, cnt, 0);

recvncfree(hBuffer);

} END Loop

70 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

12.9 UDP – Sockets Programming APIs

Compared to the TCP flowchart, notice how simple this diagram is. For the client, it is simply
socket(), send/recv. Done. UDP is not a “connected” protocol and therefore does not require the
handshaking that TCP does. UDP is therefore faster, but less reliable than TCP. The application
developer will pick the desired protocol based on the application’s needs.

For UDP, the server opens a socket, then binds the IP address and port number of the server.
Then, it listens for something to arrive.

The client also opens a socket and connects to the server. The client and server then exchange
packets.

Notice the absence (vs. TCP) of the following APIs: connect(), listen(), accept().

UDP Sockets Programming – APIs

socket()

bind()

recvfrom()

sendto()

socket()

sendto()

recvfrom()

“open a socket”

“sets IP addr & port
number of server”

“receive data from…”

“send data to…”

“send data to…”

“receive data from…”

Server Client

PKT
XFR

UDP – no handshaking, fewer APIs, easier to program – faster, but less reliable

Let’s compare UDP and TCP…

 Getting Started With the C6000 Network Development Kit (NDK) 71

SPRAAX4

12.10 TCP vs. UDP

This is a classic speed vs. reliability tradeoff. TCP is a “connected” protocol – there is
handshaking involved and delivery is guaranteed. Hence, TCP is slower, but more reliable. If
you’re a financial institution (such as an online bank), you will most likely use TCP (if they didn’t
use TCP, I think I’d steer away).

UDP has no handshaking and therefore is less reliable, but faster. For example, a streaming site
like YouTube would use UDP – fast streaming and if a frame or two drops, who really cares?

So, it is up to the system programmer to decide which protocol is used. Both are easily
supported within the NDK.

Sockets Programming – TCP vs. UDP
� In general, these two protocols do the same thing – send data.
� However, their implementation, reliability, speed and usefulness

in specific applications vary widely.
� Let’s compare each protocol from a high level…

TCP UDP
Connection • Connected communication protocol

• Uses handshaking between hosts
• Guarantees reliability of delivery

• No such mechanism
• No handshaking
• Less reliable (fire and forget)

Speed Slower Faster

Socket APIs Connected: uses connect(), accept(),
listen() APIs

Does not use connect(), accept()
listen() APIs

Send/Rcv Uses send() and recv() APIs to the
bounded address/port combo

Uses sendto() and recvfrom() APIs
where src/dst addr must be specified

Applications Used in apps that require absolute
reliability (financial info, etc.)

Used in apps that don’t care about
reliability and speed is critical
(e.g. streaming web audio/video)

Let’s compare sockets programming vs. a simple DAEMON server…

72 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

12.11 Sockets Programming vs. DAEMON

The key point here is that DAEMONs are easy to use – easy to set up and shut down. They are
servers only and therefore cannot initiate activity (like sockets can). DAEMONs are TSKs that
are abstracted by the NDK (i.e. there is a TSK living beneath the surface, but they are created
and maintained by the NDK).

Sockets programming requires more manual steps than DAEMONs, but the user has full control
over exactly how the application works. If you just need a simple server and don’t want the
hassle of sockets, use a DAEMON. If you want more sophistication and control, then sockets
may be the choice.

So, basically, DAEMON is a background service that is spawned when data arrives at the proper
IP/port. It is a TSK underneath but is completely controlled by the NDK stack. Again, the
application developer will make the proper choice based on system needs.

Sockets Programming vs. DAEMON
� In the next lab, we will strip down client.pjt to perform a DAEMON echo server only.
� DAEMONs are TSKs abstracted by the NDK and are dynamically activated

only when data arrives (they cannot initiate transfers)
� DAEMON – main advantage is reuse of memory – also coding is more efficient
� Sockets Programming uses DSP/BIOS TSKs and a file descriptor environment

(they run forever) and can initiate a transfer (unlike a DAEMON)

Sockets Programming DAEMON

Type • Created as BIOS TSKs
• TSKCreate()
• Runs continuously and requires

fdSelect() to wait on received data

• Creation requires port, IP, UDP or TCP
• DaemonNew()
• Created dynamically when data arrives

on a specific port/IP combo

File
Descriptor

• Requires a file descriptor
• fdOpenSession()

• No file descriptor needed

Sync • Requires sync mechanism
• FD_SET, FD_CLR, fdSelect()

• Mechanism is embedded in the stack

Sockets • Used/declared in function body
• socket(), bind(), connect(), etc.

• Passed as parameter
• Typically used for data recv/send

 Getting Started With the C6000 Network Development Kit (NDK) 73

SPRAAX4

13 Lab 6 – Use Sockets Programming APIs

Lab 6 – Sockets Programming
� Goal: DSK sends a packet of data from a buffer to the PC using

sockets programming (UDP).
� Use Ethereal sniffer to see the packet on the PC (“are you there?”)
� Note: Ethereal has been replaced by Wireshark.
� Time: 30min

sniffer

13.1 Lab Overview:

• In the last lab, we took the easy route – a DAEMON echo server. However, DAEMONs
cannot initiate transfers – they can only respond to clients and send data after establishing
a connection. On the other hand, using sockets programming APIs, we can build a client
application that can initiate a transfer.

• That’s the goal of this lab: to use the NDK to create the DSK as the client and send a
message to the PC (server). We will start with the code we used in the last lab and build on
it. To minimize typing mistakes, we have two starter files: sender.c and
addToClient_starter.c (both located in the \starter directory). Sender.c contains the sockets
programming APIs to send a packet and lab8C_starter.c contains a few commands we
need to copy and add to client.c. Although you are not writing this application from scratch,
it will give you a good feel for how to work with the NDK to do whatever your application
requires.

74 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

13.2 Use Sockets Programming to SEND Data
1. Open CCS and open client.pjt.
 Just a reminder here. We are currently modifying the original NDK code. If, for some reason,

we wanted to go back to the first lab and run it, we couldn’t. But remember, we saved a copy
of the “example” directory so that we can retrieve any files that might get corrupted or broken
– smart idea. If you purchase the NDK, remember to do this right away before modifying
files. It will save a few Ibuprofen.

 Open CCS and open client.pjt.

 We only have a few modifications to turn the DSK into a client and send a message to the
PC. Most of the work has been done for you in the starter files. And, based on the discussion
material, you should understand most of what sender.c is doing. Also, keep in mind that the
code we are using sets up a UDP client – we did the TCP code in the discussion material.
Ok, let’s go make this thing work…

2. Add sender.c to your project.
 Add sender.c (located in the \starter directory) to your project. Open sender.c and browse its

contents. What you will see should look familiar based on the discussion material. The task
that gets created and used is udp_test. Notice the familiar sockets programming APIs inside
the task.

 Locate the buffer: sendBuffer. Write down below what it contains:

 sendBuffer = _______________________

3. Delete unused code in client.c
 We are starting with the client.c from our last lab (DAEMON echo), so there is code that will

go unused in this lab. Let’s clean that up first:

 Near the top of client.c, remove the following two lines of code:
 #include <common/console/console.h>

 #include <common/servers/servers.h>

 In NetworkOpen(), remove the two calls to DaemonNew(). So, in essence, you have an
empty function here. We’ll add a task create to NetworkOpen() shortly.

 In NetworkClose(), remove the two calls to DaemonFree(). Again, we’ll add a line of code to
this function shortly.

 Above NetworkOpen(), remove the declaration of these handles:
 static HANDLE hEcho=0,hEchoUdp=0;

 Getting Started With the C6000 Network Development Kit (NDK) 75

SPRAAX4

4. Modify client.c to include init code for the task in sender.c.
 Every 5 seconds, sender.c sends a packet with the contents of sendBuffer to the PC. We

only need to add a few items to client.c to get this to work.

 Open the file addToClient_starter.c from the \starter directory. Also, open client.c for editing.
Position the windows so that you have both open at the same time.

¾ First, we have to create the task (udp_test) that is used in sender.c. We’ll use the API
TaskCreate() to do this. Copy the first line (LINE 1) into the NetworkOpen() function in
client.c (near line 240 or so).

¾ Next, for each task created, we need to make sure to destroy it in the event of a stack
shutdown. Insert LINE2 (TaskDestroy) into the NetworkClose() function in client.c (near
line 250).

¾ Near the top of client.c, declare the global handle that is returned by TaskCreate(). Add
LINE3 (the declaration for hUDPServer), just beneath this declaration:
static void ServiceReport(uint Item, uint Status, uint Report, HANDLE hCfgEntry);

¾ The last step is to add the prototype for the C function that corresponds to the task. Add
LINE4 near the top of client.c to the “external references” area of the code. Close
addToClient_starter.c. We’re now ready to compile and run.

5. Rebuild All and run.
 Rebuild client.pjt and fix any errors that occur. When you get a clean build and the program

loads, run it. In the command window in CCS, you should see the message “message sent
to Ethernet”. If you don’t see this, ask your instructor for help. If you do see this, congrats –
you’re on the right track. The DSK is now continuously (every 5 seconds) sending the
message “Are you there?” to the PC – that is the msg inside sendBuffer.

6. Use Wireshark to see the data coming from the DSK.
 Open Wireshark and capture the network traffic. You should see the UDP packet count

increase every 5 seconds while capturing. After about 20 seconds, hit the Stop button. Click
on one of the echo packets. You should see UDP packets from 192.168.1.41 that contain the
string “Are you there?” If not, ask your instructor for help (or, debug the problem yourself –
your instructor probably has better things to do). ☺

76 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

13.3 Save Your Solution and Close CCS
7. Save the following files using Windows Explorer:
¾ \example\network\client\dsk6455\bin\client.out (name it: client-lab6.out)

¾ \example\network\client\common\client.c (name it: client-lab6.c)

 Into the following directory:

 C:\IW64x+\solutions_student\Lab6

 You may need to create this directory using Windows Explorer and then copy your files.

 Close CCS.

 You’re Done

 Getting Started With the C6000 Network Development Kit (NDK) 77

SPRAAX4

14 Conclusion

14.1 NDK Considerations

There is a TON of useful information in the NDK User Guide (SPRU523). Many MANY questions
from users are answered there. This is a list of the top 9 issues users have that they stumble on.
Instead of just copying text out of the user guide, pointers to answers are provided here.

After reading this getting started guide, the next step for the user should be to investigate each
of the 9 issues highlighted below. After that, it really depends on the user’s specific needs. We
cannot emphasize enough how important it is to read these specific sections in the NDK User
Guide. It will save you many headaches and valuable time.

The new app note (SPRAAQ5) discusses all of the benchmark information for the NDK – how
long each function takes, memory usage, optimization tricks, etc.

NDK Ver 1.92 Considerations
� Most of the following is contained in the NDK User Guide (SPRU523).

However, it is a useful list of “pointers” to information that may
help your initial out-of-box experience with the NDK:
¾ Library descriptions (SPRU523, Sec 1.3)
¾ Explanation of the NDK software directory structure (SPRU523, Sec 1.3.3)
¾ NDK Initialization and Configuration (SPRU523, Sec 3.3)
¾ HAL drivers assume some L2 cache is configured (SPRAAQ5)
¾ Stack size recommendations (UDP/TCP stack sizes, SPRU523, Sec 3.2.2.1)
¾ Choosing TSK priorities (SPRU523, Sec 3.2.2.2)
¾ I am getting “this” error – what do I do now? (SPRU523, Sec 3.4)
¾ Packet buffers are allocated in a memory section called NDK_PACKETMEM

configurable by the user (SPRU523, Sec 3.1.4)
¾ Use client.pjt as your starting point for your application (many “uh oh’s”

can be avoided following this simple advice vs. starting with a blank page)

New NDK version 1.94…

78 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

14.2 Update – New NDK version 1.94

Update – NDK Ver 1.94 Now Available
� As this document was being authored and reviewed, two newer versions of the NDK

were released: 1.93 and 1.94. Following is a list of the improvements in Ver. 1.94:

¾ Bug fixes in NDK 1.93 release
¾ Support for multiple interfaces (enables you to simultaneously attach

multiple device drivers to the NDK stack – e.g. a native EMAC driver +
external WLAN driver)

¾ Limited IEEE 802.1p packet priority marking (useful if the “receiver” of
packets from the NDK needs to do any type of processing based on
packet markings)

¾ Nettools Library shipped in binary AND source code format (this allows
you to recompile the nettools library after removing unwanted services
– e.g. DHCP, server/client, TFTP, HTTP, PPP, etc. – smaller code size)

¾ Validated on the following platforms (only BIOS 5.3): DM642 (C64x),
C6455 (C64x+)

¾ Note: DM6437 – Ethernet drivers have not been modified for this device. So, the new features are
NOT available at this time.

For more information…

14.3 For More Information…

For More Information…
� Shown below are references that you can use to learn more

about networking, the NDK and the EMAC:

• Internetworking Technology Handbook (CISCO Systems)
www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/index.htm

• Useful Textbooks:
UNIX Network Programming – vol 1 (The sockets and networking API).

Stevens, Richard W.; Fenner, Bill; Rudoff, Andrew M. Third Edition.
TCP/IP Illustrated – vol 1 (The protocols). Stevens, Richard W.
TCP/IP Protocol Suite. Forouzan, Behrouz A.

• User Guides and Application Notes:
NDK User Guide – SPRU523
NDK Programmer’s Guide – SPRU524 (all the API calls are listed here)
EMAC User Guide – SPRU975
Using IP Multicasting with the TMS320C6000 NDK – SPRAAI3
NDK Benchmarks – SPRAAQ5
Getting Started with the C6000 Network Development Kit (NDK) – SPRAAX4

TI NDK Support: http://tiexpressdsp.com/wiki/index.php?title=Category:NDK
Advanced (but useful) topics…

 Getting Started With the C6000 Network Development Kit (NDK) 79

SPRAAX4

80 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

15 Advanced (but useful) Topics

15.1 Introduction

Following is some additional information added late in the authoring process. Users ask many
questions regarding these topics to our support line and forums. Therefore, we just couldn’t
resist adding this hopefully helpful information. “Advanced” may not be the right word – so, if
you’re new to the NDK, this might be exactly what you needed. If you’re a networking guru
(advanced user), it could still be exactly what you needed. ☺

Regardless, it’s worth knowing this info is here and may help avoid users like you jamming up
our support lines with questions… ☺

Advanced (but very useful) Topics
� Many first-time users have questions regarding the

operation of client.pjt and the NDK such as:

¾What are callback functions and why are they used?
¾Where can I find these callback functions? Are they part of

a library or can I see the source code somewhere?
¾ There is so much code in the NDK, it’s difficult to make sense

of what each piece is doing. Do you have a “map” or
step-by-step procedure of how the NDK starts and what calls
are made in order and why?

Callback functions…

� These are very important questions to answer. While the answers are
in the User Guides, here’s a quick summary that may help you…

Note: the authors of this guide wish they had this list when they first
started learning the NDK. What a time saver…

 Getting Started With the C6000 Network Development Kit (NDK) 81

SPRAAX4

15.2 Callback Functions

Callback Functions
� A callback function is a function that is called from the device driver

(e.g. the EMAC driver located in a .lib file) to source code that helps
verify that it is working correctly.

� In client.pjt, locate the source file “dsk6455init.c”. This file contains
two callback functions (that are called by the EMAC driver):

“Map” of how the NDK starts up and what happens next…

¾ C6455EMAC_getConfig()

This function reports that the MAC address was properly assigned to the EMAC
and allows you to configure which CPU interrupt the EMAC peripheral uses –
look for the variable *pIntVector.

¾ C6455EMAC_linkStatus()

This function is used to report that a valid link was detected and at what speed.

15.3 Order of Events (inside the NDK…)

Order of Events (inside the NDK…)
� Following is a list of events in the order they occur. This list is not

complete, but highlights the areas of main concern regarding the
NDK. For hardware reset events, refer to your device’s data sheet.

Continued…

1 Hardware Reset, Boot Sequence

2 Reset vector points to _c_int00 which is the BIOS_init() function (if BIOS is enabled)

3 C6455_init() in file dsk6455init.c is called by BIOS initialization code (configured
in the .tcf file under System ? General Settings)

4 main() is called. main() runs and then either return()s from main() or falls out of main()
(without this, DSP/BIOS and the scheduler will never run).

5 BIOS_start() runs and finishes its initialization. Then BIOS (scheduler) starts running.

82 Getting Started With the C6000 Network Development Kit (NDK)

SPRAAX4

Order of Events (inside the NDK…)
� Following is a list of events in the order they occur. This list is not

complete, but highlights the areas of main concern regarding the
NDK. For hardware reset events, refer to your device’s data sheet.

6 StackTest() is called (it is a static TSK configured in the .tcf file). A msg is printed
to stdout: “TCP/IP Stack Example Client”

7 NC_NetStart() is called by StackTest() and initializes the stack (both device drivers,
NDK scheduler and TCP/IP)

8 C6455EMAC_getConfig() is called and a msg is sent to stdout:
“Using MAC Address: 00-01-02-03-04-05” (or whatever number is configured)

9 ServiceReport() in client.c is called as many times as the number of services that
need configuration in StackTest(). Messages are printed to stdout following this format:

Service Status: DHCPC : Enabled : : 000

Service Status: Telnet : Enabled : : 000

Continued…

Order of Events (inside the NDK…)
� Following is a list of events in the order they occur. This list is not

complete, but highlights the areas of main concern regarding the
NDK. For hardware reset events, refer to your device’s data sheet.

10 NetworkOpen() is called and initializes dynamically all the TSKs and DAEMONs
needed by your application. By default, in client.pjt, you will see five DAEMONs
configured

11 ServiceReport() is called once again (if DHCP is enabled) to report that this service
is properly configured and running. A msg is printed to stdout (e.g.):
Service Status: DHCPC : Enabled : Running : 000

12 C6455EMAC_linkStatus() is then called by the device driver after a proper link is
detected by the PHY. A msg is sent to stdout (e.g.):

Link Status: 100Mb/s Full Duplex on PHY 1

Continued…

 Getting Started With the C6000 Network Development Kit (NDK) 83

SPRAAX4

Order of Events (inside the NDK…)
� Following is a list of events in the order they occur. This list is not

complete, but highlights the areas of main concern regarding the
NDK. For hardware reset events, refer to your device’s data sheet.

Ok…enough details…you’re on your own now… ☺

13 NetworkIPAddr() is then called when an IP address is assigned by the DHCP server
(or is statically configured in client.c). A msg is sent to stdout (e.g.):

Network Added: If-1:192.168.0.2

14 The network stack then starts running.

15 Additional details can be found in section 3.3 of the User Guide.

84 Getting Started With the C6000 Network Development Kit (NDK)

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Clocks and Timers www.ti.com/clocks Digital Control www.ti.com/digitalcontrol
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
RFID www.ti-rfid.com Telephony www.ti.com/telephony
RF/IF and ZigBee® Solutions www.ti.com/lprf Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://www.ti.com/clocks
http://www.ti.com/digitalcontrol
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless

