
OMAP5910 Dual-Core Processor
Inter-Integrated Circuit (I2C) Controller

Reference Guide

Literature Number: SPRU681B
October 2003 − Revised October 2005

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at any
time and to discontinue any product or service without notice. Customers should obtain the latest
relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order
acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale
in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the
extent TI deems necessary to support this warranty. Except where mandated by government
requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks associated
with customer products and applications, customers should provide adequate design and operating
safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI
patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information published by
TI regarding third-party products or services does not constitute a license from TI to use such products
or services or a warranty or endorsement thereof. Use of such information may require a license from
a third party under the patents or other intellectual property of the third party, or a license from TI under
the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by
TI for that product or service voids all express and any implied warranties for the associated TI product
or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such
statements.

Following are URLs where you can obtain information on other Texas Instruments products and
application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

5OMAP5910SPRU681A

Preface

Read This First

About This Manual

This document describes the I2C protocol. Figure 1 shows the overall
OMAP5910 device architecture (with the I2C peripheral highlighted), while
Figure 2 shows the I2C system overview. References to a local host in this
section refer to the MPU processor.

Notational Conventions

This document uses the following conventions.

� Hexadecimal numbers are shown with the suffix h. For example, the
following number is 40 hexadecimal (decimal 64): 40h.

Related Documentation From Texas Instruments

The following documents describe the OMAP5910 device and related
peripherals. Copies of these documents are available on the Internet at
www.ti.com. Tip: Enter the literature number in the search box provided at
www.ti.com.

OMAP5910 Dual-Core Processor MPU Subsystem Reference Guide (litera-
ture number SPRU671)

OMAP5910 Dual-Core Processor DSP Subsystem Reference Guide
(literature number SPRU672)

OMAP5910 Dual-Core Processor Memory Interface Traffic Controller
Reference Guide (literature number SPRU673)

OMAP5910 Dual-Core Processor System DMA Controller Reference Guide
(literature number SPRU674)

OMAP5910 Dual-Core Processor LCD Controller Reference Guide (litera-
ture number SPRU675)

OMAP5910 Dual-Core Processor Universal Asynchronous
Receiver/Transmitter (UART) Devices Reference Guide (literature number
SPRU676)

http://www-s.ti.com/sc/techlit/spru671
http://www-s.ti.com/sc/techlit/spru672
http://www-s.ti.com/sc/techlit/spru673
http://www-s.ti.com/sc/techlit/spru674
http://www-s.ti.com/sc/techlit/spru675
http://www-s.ti.com/sc/techlit/spru676

Trademarks

6 OMAP5910 SPRU681A

OMAP5910 Dual-Core Processor Universal Serial Bus (USB) and Frame
Adjustment Counter (FAC) Reference Guide (literature number SPRU677)

OMAP5910 Dual-Core Processor Clock Generation and System Reset
Management Reference Guide (literature number SPRU678)

OMAP5910 Dual-Core Processor General-Purpose Input/Output (GPIO)
Reference Guide (literature number SPRU679)

OMAP5910 Dual-Core Processor MMC/SD Reference Guide (literature
number SPRU680)

OMAP5910 Dual-Core Processor Inter-Integrated Circuit (I2C) Controller
Reference Guide (literature number SPRU681)

OMAP5910 Dual-Core Processor Timer Reference Guide (literature number
SPRU682)

OMAP5910 Dual-Core Processor Inter-Processor Communication
Reference Guide (literature number SPRU683)

OMAP5910 Dual-Core Processor Camera Interface Reference Guide
(literature number SPRU684)

OMAP5905 Dual-Core Processor Multichannel Serial Interface (MCSI)
Reference Guide (literature number SPRU685)

OMAP5910 Dual-Core Processor Micro-Wire Interface Reference Guide
(literature number SPRU686)

OMAP5910 Dual-Core Processor Real-Time Clock (RTC) Reference Guide
(literature number SPRU687)

OMAP5910 Dual-Core Processor HDQ/1-Wire Interface Reference Guide
(literature number SPRU688)

OMAP5910 Dual-Core Processor PWL, PWT, and LED Peripheral
Reference Guide (literature number SPRU689)

OMAP5910 Dual-Core Processor Multichannel Buffered Serial Port (McBSP)
Reference Guide (literature number SPRU708)

Trademarks

OMAP and the OMAP symbol are trademarks of Texas Instruments.

Related Documentation From Texas Instruments / Trademarks

http://www-s.ti.com/sc/techlit/spru677
http://www-s.ti.com/sc/techlit/spru678
http://www-s.ti.com/sc/techlit/spru679
http://www-s.ti.com/sc/techlit/spru680
http://www-s.ti.com/sc/techlit/spru681
http://www-s.ti.com/sc/techlit/spru683
http://www-s.ti.com/sc/techlit/spru684
http://www-s.ti.com/sc/techlit/spru685
http://www-s.ti.com/sc/techlit/spru686
http://www-s.ti.com/sc/techlit/spru687
http://www-s.ti.com/sc/techlit/spru688
http://www-s.ti.com/sc/techlit/spru689
http://www-s.ti.com/sc/techlit/spru708

Contents

7SPRU681A

Contents

1 I2C Protocol Description 11.
1.1 Functional Overview 12.
1.2 I2C Controller Signals 12.
1.3 I2C Bus Principal 13.
1.4 I2C Operation 14.

1.4.1 Serial Data Formats 14.
1.4.2 Master Transmitter 15.
1.4.3 Master Receiver 16.
1.4.4 Slave Transmitter 16.
1.4.5 Slave Receiver 16.
1.4.6 Arbitration 16.
1.4.7 I2C Clock Generation and Synchronization 17.

2 OMAP5910 I2C (Master/Slave I2C Controller) 18.
2.1 I2C Controller Features 18.
2.2 Data Format 19.
2.3 I2C Reset 19.
2.4 Prescaler (ICLK) 19.

2.4.1 Noise Filter 19.
2.5 I2C Interrupts 19.
2.6 DMA Events 20.
2.7 I2C Registers 21.

2.7.1 I2C Module Version Register (I2C_REV) 21.
2.7.2 I2C Interrupt Enable Register (I2C_IE) 22.
2.7.3 I2C Status Register (I2C_STAT) 22.

Single Byte Data (SBD) 23.
Bus Busy (BB) 24.
Receive Overrun (ROVR) 24.
Transmit Underflow (XUDF) 24.
Address As Slave (AAS) 25.
Address Zero Status (AD0)/General Call 25.
Transmit Data Ready (XRDY) 25.
Receive Data Ready (RRDY) 26.
Register Access Ready (ARDY) 26.
No Acknowledgment (NACK) 27.
Arbitration Lost (AL) 28.

Contents

8 SPRU681A

2.7.4 I2C Interrupt Vector Register (I2C_IV) 28.
Interrupt Code (INTCODE) 28.
I2C Buffer Configuration Register (I2C_BUF) 29.

2.7.5 I2C Buffer Configuration Register (I2C_BUF) 29.
Receive DMA Channel Enable (RDMA_EN) 29.
Transmit DMA Channel Enable (XDMA_EN) 30.

2.7.6 I2C Data Counter Register (I2C_CNT) 30.
Data Count (DCOUNT) 30.

2.7.7 I2C Data Access Register (I2C_DATA) 31.
2.7.8 I2C Configuration Register (I2C_CON) 32.

I2C Module Enable (I2C_EN) 32.
I2C Big-Endian (BE) 32.
Start Byte (STB) 33.
Master/Slave Mode (MST) 33.
Transmitter/Receiver Mode (TRX) 33.
Expand Address (XA) 34.
Repeat Mode (RM) 34.
Stop Condition (STP) 35.
Start Condition (STT) 35.

2.7.9 I2C Own Address Register (I2C_OA) 36.
2.7.10 I2C_Slave Address Register (I2C_SA) 37.
2.7.11 I2C Clock Prescaler Register (I2C_PSC) 37.
2.7.12 I2C SCL Low-Time Control Register (I2C_SCLL) 38.
2.7.13 I2C SCL High-Time Control Register (I2C_SCLL) 39.
2.7.14 I2C System Test Register (I2C_SYSTEST) 39.

System Test Enable (ST_EN) 40.
Free Running Mode After Breakpoint (FREE) 40.
Test Mode Select (TMODE) 40.
SCL Line Sense Input Value (SCL_I) 41.
SCL Line Drive Output Value (SCL_O) 41.
SDA Line Sense Input Value (SDA_I) 42.
SDA Line Drive Output Value (SDA_O) 42.

3 Programming 42.
3.1 Main Program 42.

4 Flowcharts 44.

A Revision History A-1.
A.1 Changes Made in This Revision A-1.

Figures

9SPRU681A

Figures

1 OMAP5910 Functional Overview 11.
2 I2C System Overview 12.
3 Data Validity on the I2C Bus 13.
4 Start and Stop Conditions 14.
5 I2C Data Transfer 14.
6 I2C Data Transfer Formats 15.
7 Arbitration Procedure Between Two Master Transmitters 17.
8 Synchronization of Two I2C Clock Generators 18.
9 Prescale Sampling Clock Divider Value 19.
10 Setup Procedure 44.
11 Master Transmitter Mode, RM = 1 45.
12 Master Receiver Mode, RM = 1, Polling 1 (Software Counter, Number of the

Receive Data Fixed) 46.
13 Master Receiver Mode, RM =1 , Polling 2 (Number of the Receive Data is

Variable, Data Contents Dependent) 47.
14 Master Transmitter Mode, RM = 0, Polling 48.
15 Master Receiver Mode, RM = 0, Polling 49.
16 Master Transmitter Mode, RM = 0, Interrupt 50.
17 Master Receiver Mode, RM = 0, Interrupt 51.
18 Master Transmitter Mode, RM = 0, DMA 52.
19 Master Receiver Mode, RM = 0, DMA 53.
20 Slave Transmitter/Receiver Mode-Polling 54.
21 Slave Transmitter/Receiver Mode-Interrupt 55.

Tables

10 SPRU681A

Tables

1 Signal Pins 13.
2 Reset State of I2C Signals 13.
3 I2C Registers 21.
4 I2C Module Version Register (I2C_REV) 22.
5 I2C Interrupt Enable Register (I2C_IE) 22.
6 I2C Status Register (I2C_STAT) 23.
7 Register Access Ready (ARDY) Set Conditions 26.
8 I2C Interrupt Vector Register (I2C_IV) 28.
9 Interrupt Code (INTCODE) Conditions 29.
10 I2C Buffer Configuration Register (I2C_BUF) 29.
11 I2C Data Counter Register (I2C_CNT) 30.
12 I2C Data Access Register (I2C_DATA) 31.
13 I2C Configuration Register (I2C_CON) 32.
14 Operating Modes 34.
15 Repeat Mode Conditions 35.
16 STT Settings 35.
17 I2C Own Address Register (I2C_OA) 36.
18 I2C Slave Address Register (I2C_SA) 37.
19 I2C Clock Prescaler Register (I2C_PSC) 37.
20 I2C SCL Low-Time Control Register (I2C_SCLH) 38.
21 I2C SCL High Time Control Register (I2C_SCLH) 39.
22 I2C System Test Register (I2C_SYSTEST) 39.
23 TMODE Settings 41.

11I2C ControllerSPRU681A

I2C Controller

1 I2C Protocol Description

This document describes the I2C protocol. Figure 1 shows the overall
OMAP5910 device architecture (with the I2C peripheral highlighted), while
Figure 2 shows the I2C system overview. References to a local host in this
section refer to the MPU processor.

Figure 1. OMAP5910 Functional Overview

32
32

32
32 System

DMA
controller

E
M
I
F
S

F
F
I

E
M

F
I

M
I

Memory
interface

traffic
controller

(TC)

MPU bus

32

MPU
interface

32

32

DSP
MMU

TMS320C55x DSP
(instruction cache,

SARAM, DARAM, DMA,
H/W accelerators)

16

32

16
FLASH

and
SRAM

memories

memories
SDRAM 16

32

SRAM
1.5 M
bits

32

MPU core
(TI925T)

(instruction
cache, data

cache, MMU)

MPU
peripheral

bridge

32

ETM9
JTAG

emulation
I/F

LCD
I/F

16
32

Osc Osc

Clock and reset
management

12 MHz 32
KHz

Clock

Reset

External
clock
request

DSP private
peripherals
Timers (3)

Watchdog timer
Level1/2

interrupt handlers

DSP private
peripheral

bus
16

DSP public (shared) peripheral bus

MPU private
peripherals
Timers (3)

Watchdog timer
Level 1/2 interrupt

handlers
Configuration

registers
Device

identification

MPU private peripheral bus

32

DSP public peripherals

McBSP1

McBSP3

MCSI1
MCSI2

MPU/DSP shared peripherals

TIPB
switch

UART1
UART2

UART3 IrDA

Mailbox
GPIO I/F

16

USB host I/F

MPU public peripherals

McBSP2

USB function I/F

I2C
μWire

Camera I/F
MPUIO

32 KHz timer
PWT
PWL

Keyboard I/F
MMC/SD
LPG x2

Frame adjustment
counter

HDQ/1-WIRE
RTC

MPU public
peripheral

bus

OMAP5910

or 13 MHz

20

I2C Protocol Description

I2C Controller12 SPRU681A

The I2C controller is shown in the MPU Public Peripherals block (lower right
portion of drawing).

Figure 2. I2C System Overview

Interrupt
handler

Local host
(MPU)

System
DMA P

er
ip

he
ra

l b
us

I2C
controller

I2C_IRQ

I2
C

_D
M

A
_R

X

I2
C

_D
M

A
_T

X

I2C.SCL

I2C.SDA

SCL

SDA

RP RP

Pullup
resistors

I2C
compatible

device

I2C
compatible

device

I2C
compatible

device

I2C
compatible

device

I2C
compatible

device

VDD

I2C I/F
pads

1.1 Functional Overview

The I2C controller function supports the multimaster mode using the
multimaster bus, to which devices capable of controlling the bus can be
connected. Each I2C device (including the OMAP5910) has a unique address
and can operate as either transmitter or receiver. In addition to being a
transmitter or receiver, a device connected to the I2C bus can also be
considered a master or slave when performing data transfers. A master device
initiates a data transfer on the bus and generates the clock signals to permit
that transfer. During this transfer, any device addressed by this master is
considered a slave.

1.2 I2C Controller Signals

Data is communicated to I2C devices via the serial data pin (SDA) and the
serial clock pin (SCL). These two wires carry information between the
OMAP5910 and other devices connected to the I2C bus. Both SDA and SCL
are bidirectional pins that must be connected to a positive supply voltage via
pullup resistors. When the bus is free, both pins are high. The pin drivers have
open-drains to perform the required wired-AND function. See Table 1 for a list
of the signal pads and Table 2 for the reset state of the I2C signals.

I2C Protocol Description

13I2C ControllerSPRU681A

Table 1. Signal Pins

Name Type Description
Reset
Value

I2C.SCL In/Out(OD) I2C serial CLK line.
Open-drain output buffer—requires an external pullup resistor (Rp)

Input

I2C.SDA In/Out(OD) I2C serial data line.
Open-drain output buffer—requires an external pullup resistor (Rp)

Input

Table 2. Reset State of I2C Signals

Pin Pads System Reset I2C Reset (I2C_EN =0)

SDA I/O High impedance High impedance

SCL I/O High impedance High impedance

The master device generates one clock pulse for each data bit transferred.
Due to the variety of devices (CMOS, NMOS, bipolar) that can be connected
to the I2C bus, the levels of logical 0 (low) and 1 (high) are not fixed and depend
on the associated VDD level.

1.3 I2C Bus Principal

The data on the SDA line must be stable during the high period of the clock.
The high and low states of the data line can change only when the clock signal
on the SCL line is low (see Figure 3).

Figure 3. Data Validity on the I2C Bus

SDA

SCL

Data line
stable,

data valid

Change
of data
allowed

The I2C module generates start and stop conditions when it is configured as
a master (see Figure 4):

I2C Protocol Description

I2C Controller14 SPRU681A

� The start condition is a high-to-low transition on the SDA line while SCL
is high.

� The stop condition is a low-to-high transition on the SDA line while SCL
is high.

The bus is considered busy after the start condition (BB = 1) and free after the
stop condition (BB = 0).

Figure 4. Start and Stop Conditions

SDA

SCL

Start
condition (S)

Stop
condition (P)

1.4 I2C Operation

1.4.1 Serial Data Formats

Each byte sent to the SDA line is 8 bits long. The number of bytes that can be
transmitted or received is unrestricted. The data is transferred with the most
significant bit (MSB) first. Each byte is followed by an acknowledge bit from the
I2C module if it is in the receive mode (see Figure 5).

Figure 5. I2C Data Transfer

1 2 7 8 9 1 2 8 9

MSB Acknowledgement
signal from receiver

Acknowledgement
signal from receiver

SDA

SCL

Start
condition (S)

Start
condition (S)

ACK ACK

I2C Protocol Description

15I2C ControllerSPRU681A

The I2C protocol supports the two data formats shown in Figure 6.

� 7-bit/10-bit addressing format
� 7-bit/10-bit addressing format with repeated start condition

The first byte after a start condition (S) always consists of 8 bits. In the
acknowledge mode, an extra acknowledgement bit is inserted after each byte.

In the addressing formats with 7-bit addresses, the first byte is composed of
seven MSB slave address bits and one LSB R/W bit. While in the addressing
formats with 10-bit addresses, the first byte is composed of a seven MSB slave
address, such as 11110XX, where 0XX are the two MSBs of the 10-bit
addresses, and one LSB R/W bit, which is 0 in this case.

The least significant R/W of the address byte indicates the direction of
transmission of the following data bytes. If R/W is 0, the master writes
(transmits) data to the selected slave; if it is 1, the master reads (receive) data
from the slave.

Figure 6. I2C Data Transfer Formats

S

S Slave Address R/W ACK Data ACK Data ACK S

1 7 1 1 8 1 8 1 1

S Slave Address 1st 7-Bit R/W ACK ACK Data ACK S

1 7 1 1 8 1 8 1 1

(a) 7-Bit Addressing Format

Slave Address 2nd 7-Bit

1 1 1 1 0 X X 0
(Write) (b) 10-Bit Addressing Format

S Slave Address R/W ACK Data ACK S

1 7 1 1 8 1 1

ACK

1 1

Slave Address

7

R/W ACK

1 8

Data

Any Number
of Bytes

Any Number
of Bytes

(c) Addressing Format With Repeated Start (S)
Condition

1.4.2 Master Transmitter

In this mode, data assembled in one of the previously described data formats
is shifted out on the serial data line SDA in synchronism with the self-generated

I2C Protocol Description

I2C Controller16 SPRU681A

clock pulses on the serial clock line SCL. The clock pulses are inhibited and
the SCL bus is held low when the intervention of the processor is required after
a byte has been transmitted.

1.4.3 Master Receiver

This mode can only be entered from the master transmitter mode. With any
of the address formats (Figure 6 (a), (b), and (c)), the master receiver is
entered after the slave address byte and bit R/W has been transmitted if R/W
is high. Serial data bits received on bus line SDA are shifted in synchronism
with the self-generated clock pulses on the SCL. The clock pulses are inhibited
and the SCL held low when the intervention of the processor is required after
a byte has been transmitted. At the end of a transfer, a stop
condition is generated.

1.4.4 Slave Transmitter

This mode can only be entered from the slave receiver mode. With any of the
address formats (Figure 6 (a), (b), and (c)), the slave transmitter is enabled if
the slave address byte is the same as its own address and bit R/W has been
transmitted if R/W is high. The slave transmitter shifts the serial data out on
the data line SDA in synchronism with the clock pulses that are generated by
the master device. It does not generate the clock, but it can hold the clock line
(SCL) low while intervention of the local host is required.

1.4.5 Slave Receiver

In this mode serial data bits received on the SDA bus are shifted
synchronously with the clock pulses on the SCL, which are generated by the
master device. It does not generate the clock, but it can hold the clock line SCL
low while intervention of the local host is required following the reception of a
byte.

1.4.6 Arbitration

If two or more master transmitters start a transmission on the same bus almost
simultaneously, an arbitration procedure is invoked. The arbitration procedure
uses the data presented on the serial bus by the competing transmitters. When
a transmitter senses that a high signal it has presented on the bus has been
overruled by a low signal, it switches to the slave receiver mode. Figure 7
shows the arbitration procedure between two devices. The arbitration
procedure gives priority to the device that transmits the serial data stream with
the lowest binary value. If two or more devices send identical first bytes,
arbitration continues on the subsequent bytes.

I2C Protocol Description

17I2C ControllerSPRU681A

Figure 7. Arbitration Procedure Between Two Master Transmitters

Device #1 loses arbitration and
switches off.

1 0 1

0 01 01 1

0 01 01 1

Bus line
SCL

Data from
device #1

Data from
device #2

Bus line
SDA

1.4.7 I2C Clock Generation and Synchronization

Under normal conditions, only one master device generates the clock signal
(SCL). During the arbitration procedure, however, there are two or more
master devices and the clock must be synchronized so that the data output can
be compared. The wired-AND property of the clock line means that a device
that first generates a low period of the clock line overrules the other devices.
At this high/low transition, the clock generators of the other devices are forced
to start generation of their own low period. The clock line then is held low by
the device with the longest low period, while the other devices that finish their
low periods must wait for the clock line to be released before starting their high
periods. A synchronized signal on the clock line is obtained, where the slowest
device determines the length of the low period and the fastest device
determines the length of the high period.

If a device pulls down the clock line for a longer time, the result is that all clock
generators must enter the wait state. In this way a slave can slow down a fast
master and the slow device can create enough time to store a received byte
or to prepare a byte to be transmitted. Figure 8 illustrates the clock
synchronization.

OMAP5910 I2C (Master/Slave I2C Controller)

I2C Controller18 SPRU681A

Figure 8. Synchronization of Two I2C Clock Generators

Wait
state

Start high
period

SCL from
device1

SCL from
device2

Bus line
SCL

2 OMAP5910 I2C (Master/Slave I2C Controller)

The multimaster I2C peripheral provides an interface between the peripheral
bus and any I2C-bus compatible devices that connect via the I2C serial bus.
External components attached to the I2C bus can serially transmit/receive up
to 8-bit data to/from the local host device through the two-wire I2C interface.

This I2C peripheral supports any slave or master I2C-compatible device.
Figure 2 shows an example of a system with multiple I2C-compatible devices
in which the I2C serial ports are all connected together for a two-way transfer
from one device to other devices.

2.1 I2C Controller Features

The main features of the I2C controller are as follows:

� Compliant with Philips I2C specification version 2.1 [1]
� Support standard mode (up to 100 kbit/s) and Fast mode (up to 400 kbit/s)
� 7-bit and 10-bit device addressing modes
� General call
� Start/Restart/Stop
� Multimaster transmitter/slave receiver mode
� Multimaster receiver/slave transmitter mode
� Combined master transmit/receive and receive/transmit mode
� Built-in FIFO for buffered read or write
� Module enable/disable capability
� Programmable clock generation
� 16-bit wide access to maximize bus throughput
� Designed for low power
� Two DMA channels
� Wide interrupt capability

OMAP5910 I2C (Master/Slave I2C Controller)

19I2C ControllerSPRU681A

The present I2C does not support:

� High-speed (HS) mode for transfer up to 3.4M bits
� C-bus compatibility mode.

2.2 Data Format

The I2C controller operates in a 16-bit word data format (byte-write access
supported for the last access), and supports endianism.

2.3 I2C Reset

The I2C_EN bit in the I2C configuration register (I2C_CON) can also reset the
I2C module. When the system bus reset is removed (RESET_ = 1),
I2C_EN = 0 keeps the I2C module in reset state.

2.4 Prescaler (ICLK)

The I2C module is operated with an internal ~12 MHz clock (ICLK). This clock
is generated via the I2C prescaler block. ICLK must be in the range from 7 MHz
to 12 MHz. This is necessary for proper operation of the I2C module. The
prescaler consists of an 8-bit register; I2C_PSC is used for dividing down the
system peripheral clock (MPUXOR_CK) to obtain a ~12 MHz clock for the I2C
module (see Figure 9).

Figure 9. Prescale Sampling Clock Divider Value

1
(PSC+1)

MPUXOR_CK ICLK

0x0:
0x1:
↓

0xFF:

Divide by 1
Divide by 2
�������������↓
Divide by 256

Values after reset are low (All 8 bits).

2.4.1 Noise Filter

The noise filter suppresses any noise with a duration of 50 ns or less. It is
designed to suppress noise with one ICLK assuming the lower and upper limits
of ICLK are 7 MHz to 12 MHz.

2.5 I2C Interrupts

The I2C module generates five types of interrupt: arbitration-lost,
no-acknowledge, registers-ready-for-access, receive, and transmit. These

OMAP5910 I2C (Master/Slave I2C Controller)

I2C Controller20 SPRU681A

five interrupts are accompanied with five interrupt masks and flags defined in
the I2C_IE and I2C_STAT registers respectively.

An arbitration-lost interrupt (AL) is generated when the I2C arbitration
procedure is lost.

A no-acknowledge interrupt (NACK) is generated when the master I2C does
not receive an acknowledge from the receiver.

A registers-ready-for-access interrupt (ARDY) is generated by the I2C
when the previously programmed address, data and command have been
performed and the status bits have been updated. This interrupt is used to let
the local host know that the I2C registers are ready to be accessed.

A receive interrupt/status (RRDY) is generated when there is received data
ready to be read by the MPU from the I2C_DATA register. This bit can also be
polled by the MPU to read the received data from the I2C_DATA
register.

A transmit interrupt/status (XRDY) is generated when the MPU needs to put
data in the I2C_DATA register after the transmitted data has been shifted out
on the SDA pin. This bit can also polled by the MPU to write the next
transmitted data into the I2C_DATA register.

The interrupt vector register, I2C_IVR, contains one of the
binary-coded-interrupt-vectors to indicate which interrupt has occurred.
Reading the I2C_IVR clears the interrupt flag; if other interrupts are pending,
a new interrupt is generated. If there is more than one interrupt flag, reading
the I2C_IVR clears the highest priority interrupt flag.

The I2C interrupt signal (I2C_IRQ) is one MPU pulse-clock-wide active-high
signal. It must be considered an edge-sensitive input by the interrupt
handler.

2.6 DMA Events

The I2C module can generate two DMA requests events, read (I2C_DMA_RX)
and write (I2C_DMA_TX), that can be used by the DMA controller to
synchronously read received data from the I2C_DATA and write transmitted
data to the I2C_DATA register. The DMA read and write requests are
generated in a similar manner as RRDY and XRDY.

The I2C DMA request signals (I2C_DMA_TX and I2C_DMA_RX) are one
MPU-pulse-clock-wide, active high signals for every new 16-bit word to be
read or written in the FIFOs. They must be considered as edge sensitive inputs
by the DMA.

OMAP5910 I2C (Master/Slave I2C Controller)

21I2C ControllerSPRU681A

2.7 I2C Registers

Table 3 lists the I2C registers. Tables 4 through 22 describe the register bits.

Table 3. I2C Registers

Register Description Access
Offset

Address

I2C_REV† I2C module version R 0x00

I2C_IE I2C interrupt enable R/W 0x04

I2C_STAT I2C status R 0x08

I2C_IV I2C interrupt vector R 0x0C

Reserved 0x10

I2C_BUF I2C buffer configuration R/W 0x14

I2C_CNT I2C data counter R/W 0x18

I2C_DATA I2C data access R/W 0x1C

Reserved† 0x20

I2C_CON I2C configuration R/W 0x24

I2C_OA I2C own address R/W 0x28

I2C_SA I2C slave address R/W 0x2C

I2C_PSC I2C clock prescaler R/W Ox30

I2C_SCLL I2C SCL low time control R/W 0x34

I2C_SCLH I2C SCL high time control R/W 0x38

I2C_SYSTEST I2C system test R/W 0x3C
† Writing to this register prevents subsequent register accesses to the I2C peripheral.

2.7.1 I2C Module Version Register (I2C_REV)

The read-only I2C module version register (I2C_REV) contains the hard coded
revision number of the module. A write to this register has no effect. This 8-bit
field (7:0) indicates the revision number of the current I2C controller module.
Its value is fixed by hardware and corresponds to the RTL revision of this
module.

The four LSBs indicate a minor revision.

The four MSBs indicate a major revision.

OMAP5910 I2C (Master/Slave I2C Controller)

I2C Controller22 SPRU681A

� Ex: 0x10: version 1.0
� 0x11: version 1.1

A reset has no effect on the value returned. Writing to this register prevents
subsequent register accesses to the I2C peripheral.

Table 4. I2C Module Version Register (I2C_REV)

Bits Field Description

15−8 − Reserved

7-0 REV Module version number

2.7.2 I2C Interrupt Enable Register (I2C_IE)

The read/write I2C interrupt enable register (I2C_IE) controls interrupts
mask/unmask function.

Table 5. I2C Interrupt Enable Register (I2C_IE)

Bits Field Description

15−5 − Reserved

4 XRDY_IE Transmit data ready interrupt enable

3 RRDY_IE Receive data ready interrupt enable

2 ARDY_IE Register access ready interrupt enable

1 NACK_IE No acknowledgment interrupt enable

0 AL_IE Arbitration lost interrupt enable

Common to all bits:

When a bit location is set to 1 by the MPU, an interrupt is signaled to the MPU
if the corresponding bit location in the I2C status register (I2C_STAT) is
asserted to 1 by the core.

If set to 0 the interrupt is masked and not signaled to the MPU.

� 0: Interrupt disabled
� 1: Interrupt enabled

Values after reset are low (all bits)

2.7.3 I2C Status Register (I2C_STAT)

The read-only I2C status register (I2C_STAT) provides core status information
for interrupt handling and other I2C control management. This register is

OMAP5910 I2C (Master/Slave I2C Controller)

23I2C ControllerSPRU681A

always read before reading the I2C interrupt vector (I2C_IV) register itself to
retain an accurate status (some bits are cleared following a read into I2C_IV).

Table 6. I2C Status Register (I2C_STAT)

Bits Field Description

15 SBD Single byte data

14−13 − Reserved

12 BB Bus busy

11 ROVR Receive overrun

10 XUDF Transmit underflow

9 AAS Address as slave

8 AD0 Address zero

7:5 − Reserved

4 XRDY Transmit data ready

3 RRDY Receive data ready

2 ARDY Register access ready

1 NACK No acknowledgment interrupt enable

0 AL Arbitration lost interrupt enable

Single Byte Data (SBD)

This read-only bit (15) is set to 1 in slave receive or master receive modes
when the last byte that was read from I2C_DATA register contains a single
valid byte.

This bit is cleared to 0 by the core when the MPU reads the I2C_IV register if
INTCODE is register access ready.

� When SBD = 1, in little-endian data format (BE = 0) the MS byte reads as
0x00 and in big-endian format (BE = 1) the LS byte reads as 0x00.

� Whenever the number of bytes to be received is unknown (slave receiver),
the MPU must poll this bit prior to attempting to read I2C_IV.

� 0: No action
� 1: Single valid byte in last 16-bit data read

The value after reset is low.

OMAP5910 I2C (Master/Slave I2C Controller)

I2C Controller24 SPRU681A

Bus Busy (BB)

This read-only bit (12) indicates the state of the serial bus.

� In the slave mode, on reception of a start condition, the device sets BB to
1. BB is clear to 0 after reception of a stop condition.

� In the master mode, the software controls BB. To start a transmission with
a start condition, MST, TRX, and STT must be set to 1. To end a
transmission with a stop condition, STP must be set to 1. When BB = 1 and
STT is set to a 1, a restart condition is generated.

� 0: Bus is free.
� 1: Bus is occupied.

The value after reset is low.

Receive Overrun (ROVR)

Receive mode only.

This read-only bit (11) indicates whether the receiver has experienced
overrun. Overrun occurs when the receive shift register (ICRSR) is full and the
receive FIFO is full. An overrun condition does not result in a data loss, the
peripheral holds the bus (low on SCL) to prevent other bytes from being
received.

� ROVR is set to 1 when the I2C has recognized an overrun.

� ROVR is clear when reading the I2C_DATA register or resetting the I2C
(I2C_EN=0).

� 0: Normal operation
� 1: Receiver overrun

The value after reset is low.

Transmit Underflow (XUDF)

This read-only bit (10) indicates whether the transmitter has experienced
underflow.

� In the master transmit mode, underflow occurs when the transmit shift
register (ICXSR) is empty, the transmit FIFO is empty, and there are still
bytes to transmit (DCOUNT ≠ 0).

� In the slave transmit mode, underflow occurs when the transmit shift
register (ICXSR) is empty, the transmit FIFO is empty, and there are still
bytes to transmit (read request from external I2C master).

OMAP5910 I2C (Master/Slave I2C Controller)

25I2C ControllerSPRU681A

� XUDF is set to 1 when the I2C has recognized an underflow. The core
holds the line until the underflow cause has disappeared.

� XUDF is clear when writing I2C_DATA register or resetting the I2C
(I2C_EN=0).

� 0: Normal operation
� 1: Transmit underflow

The value after reset is low.

Address As Slave (AAS)

This read-only bit (9) is set to 1 by the device when it has recognized its own
slave address or an address of all (8) zeros. The AAS bit is reset to 0 by restart
or stop.

� 0: No action
� 1: Address as slave

The value after reset is low.

Address Zero Status (AD0)/General Call

This read-only bit (8) is set to 1 by the device if it detects the address of all eight
zeros (that is, general call). The AD0 bit is reset to 0 (default value) when a start
or stop condition is detected.

This bit must be checked following a shared NACK/general call Interrupt to
determine the source of the interrupt.

When this bit is set to 1, AAS also reads as set to 1.

� 0: No action
� 1: General call

The value after reset is low.

Transmit Data Ready (XRDY)

Transmit mode only.

XRDY (bit 4) is set to 1 when the I2C peripheral is a master or slave transmitter,
the MPU is able to write a new data into the I2C_DATA register, and the
transmitter still requires a new data. A master transmitter requests new data
if DCOUNT ≠ 0, and a slave transmitter requests new data if a read request
from external master.

OMAP5910 I2C (Master/Slave I2C Controller)

I2C Controller26 SPRU681A

Note:

The transmitter requests 2 bytes to be written even if only a single byte is
needed. In this case, the “extra” byte must be filled with a dummy 0x00 value
that is not transmitted over the I2C line.

XRDY is automatically cleared to 0 by the core when I2C_DATA is written and
the transmit FIFO buffer is full. The MPU can also poll this bit to write newly
transmitted data into I2C_DATA register.

� 0: Transmit buffer full (or receiver mode)
� 1: Transmit data ready (for write) and byte is needed.

The value after reset is low.

Receive Data Ready (RRDY)

RRDY (bit 3) is set to 1 when the MPU is able to read new data from the
I2C_DATA register. RRDY is automatically cleared to 0 by the core when the
I2C_DATA is read and the receive FIFO buffer is empty. The MPU can also poll
this bit to read the received data in the I2C_DATA register.

In the interrupt mode, the MPU must poll this bit after each read to I2C_DATA
to ensure that there is no other data on the FIFO waiting to be read. The RRDY
must be cleared to 0 to receive a new RRDY interrupt.

� 0: Receive buffer empty
� 1: Receive data ready (for read)

The value after reset is low.

Register Access Ready (ARDY)

Bit 2, when set to 1, indicates that the previously programmed data and
command (receive or transmit, master or slave) have been performed and the
status bit has been updated. This flag is used by the MPU to indicate that the
I2C registers are ready to be accessed again.

Table 7. Register Access Ready (ARDY) Set Conditions

Mode Others ARDY Set Conditions

Master transmit STP = 1, RM = 0 DCOUNT=0

Master receive STP = 1, RM = 0 DCOUNT = 0 and receiver FIFO empty

Master transmit or
receive

STP = 0, RM = 0 DCOUNT passed 0

OMAP5910 I2C (Master/Slave I2C Controller)

27I2C ControllerSPRU681A

Table 7. Register Access Ready (ARDY) Set Conditions (Continued)

Mode ARDY Set ConditionsOthers

Master transmit or
receive

RM=1 Never

Slave transmit − Stop condition received from master

Slave receive − Stop condition and receiver FIFO empty

This bit is cleared to 0 by the core with a read of the matching interrupt vector
in I2C_IV register.

� 0: No action
� 1: Access ready

The value after reset is low.

No Acknowledgment (NACK)

The no acknowledge flag bit (1) is set when the hardware detects that no
acknowledge has been received.

This bit is cleared to 0 by the core with a read of the matching interrupt vector
in I2C_IV register.

� 0: Normal/no action required
� 1: NACK

The value after reset is low.

When a NACK occurs, the system has to perform the following actions to
recover:

1) Read the INTCODE in the I2C_IV register to release NACK in I2C_STAT.

2) Write to the STP bit in the I2C_CON register to release I2C data line.

The NACK and AL bits in the I2C_CON register should not be polled be-
cause an update could be missed. These bits require an interrupt process.
The INTCODE field in the I2C_IV register should be read before any action
is taken in the subroutine.

OMAP5910 I2C (Master/Slave I2C Controller)

I2C Controller28 SPRU681A

Arbitration Lost (AL)

The arbitration lost flag bit is set to 1 when the device in the master transmitter
mode senses it has lost an arbitration when two or more transmitters start a
transmission almost simultaneously or when the I2C attempts to start a
transfer while BB (bus busy) is 1.

When this bit is set to 1 due to arbitration lost, the MST/STP bits are
automatically cleared by the core and the I2C becomes a slave receiver.

The BB bit is cleared to 0 by the core with a read of the matching interrupt
vector in I2C_IV register.

� 0: Normal/no action required
� 1: Arbitration lost

The value after reset is low.

2.7.4 I2C Interrupt Vector Register (I2C_IV)

Table 8. I2C Interrupt Vector Register (I2C_IV)

Bits Field Description

15−3 − Reserved

2−0 INTCODE Interrupt code

Interrupt Code (INTCODE)

The binary-coded-interrupt vector (bit 2−> 0) indicates which interrupt has
occurred. Reading the I2C_IV clears the interrupt flag. If other interrupts are
pending, a new interrupt is generated. If there is more than one interrupt flag,
reading the I2C_IV clears the highest priority interrupt flag.

The values of all 3 bits are low after reset.

OMAP5910 I2C (Master/Slave I2C Controller)

29I2C ControllerSPRU681A

I2C Buffer Configuration Register (I2C_BUF)

Table 9. Interrupt Code (INTCODE) Conditions

Interrupt Code Interrupt Occurred Priority

000 None −

001 Arbitration lost interrupt Highest

010 No acknowledgement interrupt/general call ↓

011 Register access ready interrupt

100 Receive data ready interrupt

101 Transmit data ready interrupt Lowest

Others Reserved −

2.7.5 I2C Buffer Configuration Register (I2C_BUF)

The read/write I2C buffer configuration register (I2C_BUF) enables DMA
transfers.

Table 10. I2C Buffer Configuration Register (I2C_BUF)

Bits Field Description

15 RDMA_EN Receive DMA channel enable

14−8 − Reserved

7 XDMA_EN Transmit DMA channel enable

6−0 − Reserved

Receive DMA Channel Enable (RDMA_EN)

When bit 15 is set to 1, the receive DMA channel is enabled and the
receive data ready interrupt is automatically disabled (RRDY_IE bit cleared).

� 0: Receive DMA channel disabled
� 1: Receive DMA channel enabled

The value after reset is low.

OMAP5910 I2C (Master/Slave I2C Controller)

I2C Controller30 SPRU681A

Transmit DMA Channel Enable (XDMA_EN)

When this bit is set to 1, the transmit DMA channel is enabled and the transmit
data ready interrupt is automatically disabled (XRDY_IE bit cleared).

� 0: Transmit DMA channel disabled
� 1: Transmit DMA channel enabled

The value after reset is low.

The read/write I2C data counter register (I2C_CNT) controls the number of
bytes in the I2C data payload.

2.7.6 I2C Data Counter Register (I2C_CNT)

Table 11. I2C Data Counter Register (I2C_CNT)

Bits Field Description

15−0 DCOUNT Data count

Data Count (DCOUNT)

Master mode only (receive or transmit).

This 16-bit countdown counter decrements by 1 for every byte received or
sent. A write initializes DCOUNT to a saved initial value. A read returns the
number of bytes that are yet to be received or sent. A read into DCOUNT
returns the initial value only before a start condition and after a stop condition.

When DCOUNT reaches 0, the core generates a stop condition if a stop
condition was specified (STP = 1) and the ARDY status flag is set to 1.

If STP = 0, then the I2C asserts SCL = 0 when DCOUNT reaches 0. The MPU
can then reprogram DCOUNT to a new value and resume sending or
receiving data with a new start condition (restart). This process repeats until
the STP is set to 1 by the LH.

The ARDY flag is set each time DCOUNT reaches 0 and DCOUNT is reloaded
to its initial value.

In slave mode (receive or transmit), DCOUNT is not used.

� 0x0: Reserved value. Do not use this setting.
� 0x1: Data counter = 1 bytes.
� ↓� ↓
� 0xFFFF: Data counter = 65535 bytes (216 -1)

OMAP5910 I2C (Master/Slave I2C Controller)

31I2C ControllerSPRU681A

Note that DCOUNT is a don’t care when RM is set to 1.

The values after reset are low (all 16 bits).

The I2C data access register (I2C_DATA) is the entry point for the MPU to read
data from, or write data into, the FIFO buffer. The FIFO size is 2x16bits (4
bytes). Bytes within a word are stored and read in little-endian format
(I2C_CON:BE=0) or big-endian format (I2C_CON:BE=1).

2.7.7 I2C Data Access Register (I2C_DATA)

Table 12. I2C Data Access Register (I2C_DATA)

Bits Field Description

15−0 DATA Transmit/Receive FIFO data

When read, this register contains the received I2C data packet (1 or 2 bytes).
This register must be accessed in 16-bit mode by the LH. In case of an odd
number of bytes received to read, the upper byte of the last access always
reads as 0x00. The MPU must check the SBD status bit in I2C_STAT
register to flush this null byte.

When written to, this register contains the byte(s) value(s) to transmit over the
I2C data line (1or 2 bytes). This register must be accessed in 16-bit mode
except for the last byte in case of an odd number of bytes to transmit. The last
byte of the data packet may be written using a byte write access or a 16-bit
write access.

When writing to the FIFO, the last data transfer must be a 16-bit transfer when
it is written by the DMA. It can either be an 8-bit or 16-bit transfer when it is
written by the MPU. When an odd number of bytes is to be transferred, the
DMA uses all 16-bit transfers and fills the unused byte (upper or lower byte
according to the selected endianism) of the last 16-bit transfers with all 0s.

In SYSTEST loop back mode (I2C_SYSTEST:TMODE=11) this register is also
the entry/receive point for the data.

The values after reset are low (all 16 bits).

A read access when the buffer is empty returns the previous read data value.
A write access when the buffer is full is ignored. In both events, the FIFO
pointers are not updated and a remote access error (hardware error) is
generated (access qualifier). No remote error is generated if the local host
performs a 16-bit access if the buffer contains a single byte.

OMAP5910 I2C (Master/Slave I2C Controller)

I2C Controller32 SPRU681A

2.7.8 I2C Configuration Register (I2C_CON)

Table 13. I2C Configuration Register (I2C_CON)

Bits Field Description

15 I2C_EN I2C module enable

14 BE Big-endian mode

13−12 Reserved

11 STB Start byte mode (master mode only)

10 MST Master/slave mode

9 TRX Transmitter/receiver mode (master mode only)

8 XA Expand address

7−3 Reserved

2 RM Repeat mode (master mode only)

1 STP Stop condition (master mode only)

0 STT Start condition (master mode only)

I2C Module Enable (I2C_EN)

When this bit (15) is set to 0, the I2C controller is not enabled and reset. When
0, the receive and transmit FIFOs are cleared and all status bits are set to their
default values.

The local host must set this bit to 1 for normal operation.

� 0: I2C controller in reset
� 1: I2C module enabled

The value after reset is low.

I2C Big-Endian (BE)

When this bit (14) is 0 (default), the FIFO is accessed in little-endian format.
In transmit mode, the LSB (I2C_DATA[7:0]) is transmitted first and the MSB
(I2C_DATA[15:8]) is transmitted in 2nd position over the I2C line. Conversely,
in receive mode, the 1st or odd byte received (1, 3, 5…) is stored in the LSB
position and the 2nd or even byte received in the MSB position.

When the MPU sets this bit to a 1, the FIFO is accessed in big-endian format.
In the transmit mode, the MSB (I2C_DATA[15:8]) is transmitted first and the

OMAP5910 I2C (Master/Slave I2C Controller)

33I2C ControllerSPRU681A

LSB (I2C_DATA[7:0]) is transmitted in 2nd position over the I2C line.
Conversely, in receive mode, the 1st or odd byte received (1,3, 5…) is stored
in the MSB position and the 2nd or even byte received in the LSB
position.

� 0: Little-endian mode
� 1: Big-endian mode

The value after reset is low.

Start Byte (STB)

Master mode only.

The start byte mode bit (11) is set to 1 by the local host to configure the I2C in
start byte mode (I2C_SA=00000001). See the Philips I2C specification for
more details.

� 0: Normal mode
� 1: Start byte mode

The value after reset is low.

Master/Slave Mode (MST)

When bit 10 is cleared, the I2C controller is in the slave mode and the serial
clock (SCL) is received from the master device.

When this bit is set, the I2C controller is in the master mode and it generates
the serial clock.

Once set, this bit is automatically cleared by a stop condition.

� 0: Slave mode
� 1: Master mode

The value after reset is low.

Transmitter/Receiver Mode (TRX)

Master mode only.

When bit 9 is cleared, the I2C controller is in the receiver mode and data on
data line SDA is shifted into the receiver FIFO and can be read from I2C_DATA
register.

When this bit is set, the I2C controller is in the transmitter mode and the data
written in the transmitter FIFO via I2C_DATA is shifted out on data line SDA.

OMAP5910 I2C (Master/Slave I2C Controller)

I2C Controller34 SPRU681A

� 0: Receiver mode
� 1: Transmitter mode

The value after reset is low.

Table 14 defines the operating modes.

Table 14. Operating Modes

MST TRX Operating Modes

0 x Slave receiver

0 x Slave transmitter

1 0 Master receiver

1 1 Master transmitter

Expand Address (XA)

When set, bit 8 expands the address to 10-bits.

� 0: 7-bit address mode
� 1: 10-bit address mode

The value after reset is low.

Repeat Mode (RM)

Mater mode only.

Bit 2 is set to a 1 by the MPU to place the I2C in the repeat mode. In this mode,
data is continuously transmitted out of the I2C_DATA transmit register until the
STP bit is set to 1 regardless of DCOUNT value. This bit is don’t care if the I2C
is configured in slave mode.

� 0: Normal mode
� 1: Repeat mode

The value after reset is low.

OMAP5910 I2C (Master/Slave I2C Controller)

35I2C ControllerSPRU681A

Table 15. Repeat Mode Conditions

RM STT STP Conditions Bus Activities Mode

0 0 0 Idle None NA

0 0 1 Stop P NA

0 1 0 (Re)Start S-A-D..(n)..D Repeat n

0 1 1 (Re)Start-Stop S-A-D..(n)..D-P Repeat n

1 0 0 Idle none NA

1 0 1 Stop P NA

1 1 0 (Re)Start S-A-D-D-D….. Continuous

1 1 1 Reserved None NA

Stop Condition (STP)

Master mode only.

Bit 1 can be set to 1 by the MPU to generate a stop condition. It is reset to 0
by the hardware after the stop condition has been generated. The stop
condition is generated when DCOUNT passes 0.

� 0: No action or stop condition detected
� 1: Stop condition queried

The value after reset is low.

Start Condition (STT)

Master mode only.

Bit 0 can be set to a 1 by the MPU to generate a start condition. It is reset to
0 by the hardware after the start condition has been generated. The start/stop
bits can be configured to generate different transfer formats. The STT and STP
can be used to terminate the repeat mode.

� 0: No action or start condition generated
� 1: Start

The value after reset is low.

Table 16. STT Settings

STT STP Conditions Bus Activities

1 0 Start S-A-D

0 1 Stop P

OMAP5910 I2C (Master/Slave I2C Controller)

I2C Controller36 SPRU681A

Table 16. STT Settings (Continued)

STT Bus ActivitiesConditionsSTP

1 1 Start/stop (COUNT= n) S-A-D..(n)..D-P

1 0 Start (DCOUNT= n) S-A-D..(n)..D

DCOUNT is data count value.

2.7.9 I2C Own Address Register (I2C_OA)

The I2C address register (I2C_OA) specifies the module I2C 7-bit or 10-bit
address (own address).

Table 17. I2C Own Address Register (I2C_OA)

Bits Field Description

15−10 Reserved

9−0 OA Own address

This field (bits 9-0) specifies either:

� A 10-bit address coded on OA[9:0] when XA (expand address,
I2C_MCR[8]) is set to 1.

� A 7-bit address coded on OA[6:0] when XA (expand address,
I2C_MCR[8]) is set to 0. In this case, OA[9:7] bits must be set to 000 by
application software.

The values after reset are low (all 10 bits).

OMAP5910 I2C (Master/Slave I2C Controller)

37I2C ControllerSPRU681A

2.7.10 I2C_Slave Address Register (I2C_SA)

The I2C slave address register (I2C_SA) specifies the addressed I2C module
7-bit or 10-bit address (slave address).

Table 18. I2C Slave Address Register (I2C_SA)

Bits Field Description

15−10 Reserved

9−0 SA Slave address

This field (bits 9:0) specifies either:

� A 10-bit address coded on SA[9:0] when XA (expand address, I2C_MCR[8]) is
set to 1.

� A 7-bit address coded on SA[6:0] when XA (expand address, I2C_MCR[8]) is
set to 0. In this case, SA[9:7] bits must be set to 000 by application software.

The values after reset are high (all 10 bits).

2.7.11 I2C Clock Prescaler Register (I2C_PSC)

The I2C clock prescaler register (I2C_PSC) register is used to specify the
internal clocking of the I2C peripheral core.

Table 19. I2C Clock Prescaler Register (I2C_PSC)

Bits Field Description

15−8 Reserved

7−0 PSC Prescale sampling clock divider value

The core (bits 7-0) uses this 8-bit value to divide the peripheral clock
(MPUXOR_CK) to generate its own internal sampling clock (ICLK). The core
logic is sampled at the clock rate of the system clock for the module divided by
(PSC+1):

� 0x0: Divide by 1

� 0x1: Divide by 2

� All other settings are Reserved.

The values after reset are low (all 8 bits).

OMAP5910 I2C (Master/Slave I2C Controller)

I2C Controller38 SPRU681A

2.7.12 I2C SCL Low-Time Control Register (I2C_SCLL)

This I2C SCL low-time control register (I2C_SCLH) is used to determine the
SCL low-time value when master.

Table 20. I2C SCL Low-Time Control Register (I2C_SCLH)

Bits Field Description

15−8 Reserved

7−0 SCLL SCL low0x0: 6 * ICLK time period time

Master mode only.

This 8-bit value (bits 7:0) is used to generate the SCL low-time value (tLOW) when
the peripheral is operated in master mode.

The SCL low-time equals (SCLL+6) * ICLK time period (internal sampling clock
rate).

� 0x0: 6 * ICLK time period

� 0x1: 7 * ICLK time period

� ↓�↓

� 0xFF: 261 * ICLK time period

The values after reset are low (all 10 bits).

OMAP5910 I2C (Master/Slave I2C Controller)

39I2C ControllerSPRU681A

2.7.13 I2C SCL High-Time Control Register (I2C_SCLL)

The I2C SCL high-time control register (I2C_SCLL) determines the SCL
high-time value when master.

Table 21. I2C SCL High Time Control Register (I2C_SCLH)

Bits Field Description

15−8 Reserved

7−0 SCLH SCL high time

Master mode only.

This 8-bit value (bits 7-0) is used to generate the SCL high time value (tHIGH)
when the peripheral is operated in master mode.

The SCL high time equals (SCLH+6) * ICLK time period (internal sampling clock
rate).

� 0x0: 6 * ICLK time period

� 0x1: 7 * ICLK time period

� ↓�↓

� 0xFF: 261 * ICLK time period

The values after reset are low (all 10 bits).

2.7.14 I2C System Test Register (I2C_SYSTEST)

The I2C system test register (I2C_SYSTEST) is used to facilitate system level
test by overriding some of the standard functional features of the peripheral.
It can permit the test of SCL counters, control the signals that connect to I/O
pins, or create digital loop-back for self-test when the module is configured in
system test (SYSTEST) mode. It also provides stop/no-stop function in debug
mode. It is never set for normal I2C operation.

Table 22. I2C System Test Register (I2C_SYSTEST)

Bits Field Description

15 ST_EN System test enable

14 FREE Free running mode (on breakpoint)

13−12 TMODE Test mode select

11−4 Reserved

3 SCL_I SCL line sense input value

2 SCL_O SCL line drive output value

OMAP5910 I2C (Master/Slave I2C Controller)

I2C Controller40 SPRU681A

Table 22. I2C System Test Register (I2C_SYSTEST) (Continued)

Bits DescriptionField

1 SDA_I SDA line sense input value

0 SDA_O SDA line drive output value

System Test Enable (ST_EN)

Bit 15 must be set to 1 to permit other system test register bits to be set.

� 0: Normal mode
� 1: System test enabled

The value after reset is low.

Free Running Mode After Breakpoint (FREE)

Bit 14 is used to determine the state of the I2C controller when a breakpoint
is encountered in the HLL debugger. This bit can be set independently of the
ST_EN value.

FREE = 0: Stops immediately if SCL is low and keeps driving SCL low whether
I2C is master transmitter/receiver. If SCL is high, I2C waits until SCL becomes
low and then stops. If the I2C is a slave, it stops when the transmission/
receiving completes.

FREE = 1: The I2C runs free.

� 0: Stop mode (on breakpoint condition)
� 1: Free-running mode

The value after reset is low.

Test Mode Select (TMODE)

In the normal functional mode (ST_EN = 0), these bits (13-12) are don’t care.
They always read as 00 and a write is ignored.

In the system test mode (ST_EN = 1), these bits can be set according to the
following table to permit various system tests.

OMAP5910 I2C (Master/Slave I2C Controller)

41I2C ControllerSPRU681A

Table 23. TMODE Settings

TMODE Mode

00 Functional mode (default)

01 Reserved

10 Test of SCL counters (SCLL, SCLH, PSC)

11 Loop back mode select + SDA/SCL IO mode select

The values after reset are low (2 bits).

In the SCL counter test mode, the SCL pin is driven with a permanent clock
as
a master with the parameters set in I2C_PSC, I2C_SCLL, and I2C_SCLH
registers.

Loopback mode: In the master transmit mode only, data transmitted from the
I2C_DATA register (write action) is received in the same I2C_DATA register
via an internal path through the one-deep FIFO buffers. The DMA and interrupt
requests is normally generated if enabled.

In the SDA/SCL I/O mode, the SCL IO and SDA IO are controlled via the
I2C_SYSTEST[3:0] register bits.

SCL Line Sense Input Value (SCL_I)

In the normal functional mode (ST_EN = 0), this read-only bit (3) always reads
as 0.

In the system test mode (ST_EN = 1 and TMODE = 11), this read only-bit
returns the logical state taken by the SCL line (either 1 or 0).

The value after reset is low.

SCL Line Drive Output Value (SCL_O)

In the normal functional mode (ST_EN = 0), this bit (2) is don’t care, and always
reads as 0. Writes are ignored.

In the system test mode (ST_EN = 1 and TMODE = 11), a 0 forces a low level
on the SCL line and a 1 puts the I2C output driver in a high-impedance state.

� 0: Force 0 on the SCL data line
� 1: SCL output driver in HI-Z state

Programming

I2C Controller42 SPRU681A

The value after reset is low.

SDA Line Sense Input Value (SDA_I)

In the normal functional mode (ST_EN = 0), this read-only-bit (1) always reads
as 0.

In the system test mode (ST_EN = 1 and TMODE = 11), this read-only bit
returns the logical state taken by the SDA line (either 1 or 0).

The value after reset is low.

SDA Line Drive Output Value (SDA_O)

In normal functional mode (ST_EN = 0), this bit (0) is don’t care, and always
reads as 0. Writes are ignored.

In the system test mode (ST_EN = 1 and TMODE = 11), a 0 forces a low level
on the SDA line and a 1 puts the I2C output driver in a high-impedance state.

� 0: Forces 0 on the SDA data line
� 1: SDA output driver in HIZ state

The value after reset is low.

3 Programming

3.1 Main Program

State after reset:

1) Program the prescaler to obtain an approximately 12-MHz I2C module
clock (I2C_PSC = x; this value is to be calculated and is dependent on the
CPU frequency).

� If using an interrupt for transmit/receive data, enable the interrupt
masks.

� If using DMA for transmit/receive data, enable the DMA and program
the DMA controller.

2) Take the I2C module out of reset (I2C_EN = 1).

Initialization procedure: Configure the I2C mode register (I2C_CON) bits.

The program clock control registers (I2C_SCLL and I2C_SCLH): Program the
I2C clock to 100K bps or 400K bps (I2C_SCLL = x and I2C_SCLH = x; these
values must be calculated and are dependent on the CPU frequency).

Programming

43I2C ControllerSPRU681A

� Configure the address registers:

� Configure its own address (I2C_OA = x).

� Configure the slave address (I2C_SA = x).

� Program the transmit data register (I2C_DATA): If in the master
transmitter mode, program the data transmit register (I2C_DATA = x).

� Configure the status and mode register (I2C_STAT): Poll the bus-busy
(BB) bit in the I2C status register (I2C_STAT); if it is cleared to 0
(bus-not-busy), configure START/STOP condition to initiate a transfer.

� Poll receive data: Poll the receive data ready interrupt flag bit (RRDY) in
the I2C status register (I2C_STAT), use the RRDY interrupt, or use the
DMA to read the receive data in the data receive register (I2C_DATA).

� Poll transmit data: Poll the transmit data ready interrupt flag bit (XRDY) in
the I2C status register (I2C_STAT), use the XRDY interrupt, or use the
DMA to write data into the data transmit register (I2C_DATA).

Interrupt subroutines:

1) Test for arbitration lost and resolve accordingly.
2) Test for no-acknowledge and resolve accordingly.
3) Test for register access ready and resolve accordingly.
4) Test for receive data and resolve accordingly.
5) Test for transmit data and resolve accordingly.

Flowcharts

I2C Controller44 SPRU681A

4 Flowcharts

Figure 10 shows the setup procedure and Figures 11 through 21 are the
master/slave I2C flowcharts.

Figure 10. Setup Procedure

Start

Write I2C_OA.

Write I2C_IE.

Write I2C_SCLL.

Write I2C_SCLH.

Use
repeat mode

(RM=1)
? Write I2C_CNT.

No

Yes

Write I2C_SA.

End

Flowcharts

45I2C ControllerSPRU681A

Figure 11. Master Transmitter Mode, RM = 1

Bus active

Start

Is
bus free
(BB=0)

?

Write I2C_CON
With 8605h.

End

Read I2C_STAT.

No

Yes

1

n = 0 (data byte counter):
m = Number of data bytes

to be transferred

Read I2C_STAT.

Is
ACK returned

(NACK=0)
?

2

STT and STP are
cleared to 0 by hardware.

No

Yes

Reprogram
the registers.

STT = 1
(new start)

?

Yes

No STP = 1
?

No

3

Can
update

the registers
(XUDF=1)

?

No

Yes

Read I2C_STAT.

Write I2C_DATA.

n = n + 2

Are
m bytes

transferred
(n. = m)

?

Is
send data

being requested
(XUDF=1)

?

Yes

No

Yes

No

Start is
generated.

Start
address
is sent.

New
START is
generated.

STOP is
generated.

DATA is
sent.

Set appropriate values to every
bit of I2C_CON. I2C_EN bit must be set
to 1 to take I2C out of reset condition. Setting
I2C_EN and other mode bits can be done
simultaneously.

Because RM=1.the hardware counter does not
run. The software counter counts the number of
the required transfer.

The I2C goes into slave receiver mode.

[EXPECTED COMMAND]
At the beginning,
(STT,STP) = (1.0)
in the middle,
(STT, STP) = (0.0)
At the end,
(STT, STP) = (0.1)

[EXPECTED I2C_IE]
I2C_IE = 00000b

3

2

1

Flowcharts

I2C Controller46 SPRU681A

Figure 12. Master Receiver Mode, RM = 1, Polling 1 (Software Counter, Number of the
Receive Data Fixed)

Start

Is
bus free
(BB=0)

?

Write I2C_CON
with 8405h.

End

Read I2C_STAT.

No

Yes

1

n = 0 (data byte counter):
m = Number of data bytes

to be transferred

Read I2C_STAT.

Is
ACK returned

(NACK=0)
?

2

STT and STP are
cleared to 0 by hardware.

No

Yes

Reprogram
the registers.

STT = 1
(new start)

?

Yes

No STP = 1
?

No

3

Read I2C_DATA.

n = n + 2

Are
m bytes

transferred
(n. = m)

?

Is
send data

being requested
(XUDF=1)

?

Yes

No

Yes

No

Set appropriate values to every
bit of I2C_CON. I2C_EN bit must be set
to 1 to take I2C out of reset condition. Setting
I2C_EN and other mode bits can be done
simultaneously.

Because RM=1. the hardware counter does not
run.The software counter counts the number of
the required transfer.

The I2C goes into slave receiver mode.

Set STP = 1

[EXPECTED COMMAND]
At the beginning,
(STT,STP) = (1.0)
in the middle,
(STT, STP) = (0.0)
At the end,
(STT, STP) = (0.1)

[EXPECTED I2C_IE]
I2C_IE = 00000b

3

2

1

Reprogram
the registers.

Read I2C_DATA.

Yes

4

4

Flowcharts

47I2C ControllerSPRU681A

Figure 13. Master Receiver Mode, RM =1 , Polling 2 (Number of the Receive Data is
Variable, Data Contents Dependent)

Start

Is
bus free
(BB=0)

?

Write I2C_CON
with 8405h.

End

Read I2C_STAT.

No

Yes

1

Read I2C_STAT.

Is
ACK returned

(NACK=0)
?

2

STT and STP are
cleared to 0 by hardware.

No

Yes

Reprogram
the registers.

STT = 1
(new start)

?

Yes

No STP = 1
?

No

3

End
code

?

Is
received data
in I2C_DATA
(RRDY=1)

?

No

Yes

Set appropriate values to every
bit of I2C_CON. I2C_EN bit must be set
to 1 to take I2C out of reset condition. Setting
I2C_EN and other mode bits can be done
simultaneously.

Dummy read. The contents of this
read data have no meaning.

The I2C goes into slave receiver mode.

[EXPECTED COMMAND]
At the beginning,
(STT,STP) = (1.0)
in the middle,
(STT, STP) = (0.0)
At the end,
(STT, STP) = (0.1)

[EXPECTED I2C_IE]
I2C_IE = 00000b

3

2

1

Read I2C_DATA.

Yes

Reprogram
the registers.

Read I2C_DATA.

Yes

No

Flowcharts

I2C Controller48 SPRU681A

Figure 14. Master Transmitter Mode, RM = 0, Polling

Start

Is
Bus free
(BB=0)

?

Write I2C_CON
with 8603h.

End

Read I2C_STAT.

No

Yes

Read I2C_STAT.

Is
ACK returned

(NACK=0)
?

STT and STP are
cleared to 0 by hardware.

No

Yes

Reprogram
the registers.

STT = 1
(new start)

?

Yes

No STP = 1
?

No

Can
update the
registers

(ARDY=1)
?

Set appropriate values to every
bit of I2C_CON. I2C_EN bit must be set
to 1 to take I2C out of reset condition. Setting
I2C_EN and other mode bits can be done
simultaneously.

Yes

[EXPECTED COMMAND]
At the beginning,
(STT,STP) = (1.0), (1.1), (1.0), (1.1)
in the middle,
(STT, STP) = (0.0), (0.1)
At the end,
(STT, STP) = (0.1)

[EXPECTED I2C_IE]
I2C_IE = 00000b

Yes

Is
send data

being requested
(XRDY=1)

?

No No

Yes

Write I2C_DATA.

The I2C goes into slave receiver mode.

Flowcharts

49I2C ControllerSPRU681A

Figure 15. Master Receiver Mode, RM = 0, Polling

Start

Is
Bus free
(BB=0)

?

Write I2C_CON
with 8403h.

End

Read I2C_STAT.

No

Yes

Read I2C_STAT.

Is
ACK returned

(NACK=0)
?

STT and STP are
cleared to 0 by hardware.

No

Yes

Reprogram
the registers.

STT = 1
(new start)

?

Yes

No STP = 1
?

No

Can
update the
registers

(ARDY=1)
?

Set appropriate values to every
bit of I2C_CON. I2C_EN bit must be set
to 1 to take I2C out of reset condition. Setting
I2C_EN and other mode bits can be done
simultaneously.

Yes

[EXPECTED COMMAND]
At the beginning,
(STT,STP) = (1.0), (1.1), (1.0), (1.1)
in the middle,
(STT, STP) = (0.0), (0.1)
At the end,
(STT, STP) = (0.1)

[EXPECTED I2C_IE]
I2C_IE = 00000b

Yes

Is
received data
in I2C_DATA
(RRDY=1)

?

No No

Yes

Read I2C_DATA.

The I2C goes into slave receiver mode.

Flowcharts

I2C Controller50 SPRU681A

Figure 16. Master Transmitter Mode, RM = 0, Interrupt

Start

Is
Bus free
(BB=0)

?

Write I2C_CON
with 8603h.

End

Read I2C_STAT.

No

Yes

Is
ACK returned

(NACK=0)
?

STT and STP are
cleared to 0 by hardware.

No

Yes

Reprogram
the registers.

STT = 1
(new start)

?

Yes

No STP = 1
?

No

Are
n bytes

transferred
(ARDY=1)

?

Set appropriate values to every
bit of I2C_CON. I2C_EN bit must be set
to 1 to take I2C out of reset condition. Setting
I2C_EN and other mode bits can be done
simultaneously.

Yes

[EXPECTED COMMAND]
At the beginning,
(STT,STP) = (1.0), (1.1), (1.0), (1.1)
in the middle,
(STT, STP) = (0.0), (0.1)
At the end,
(STT, STP) = (0.1)

[EXPECTED I2C_IE]
I2C_IE = 11111b

Yes

Is
send data

being requested
(XRDY=1)

?

No No

Yes

Write I2C_DATA.

The I2C goes into slave receiver mode.

Read I2C_STAT.

Is
interrupt
received

?
No

Flowcharts

51I2C ControllerSPRU681A

Figure 17. Master Receiver Mode, RM = 0, Interrupt

Start

Is
Bus free
(BB=0)

?

Write I2C_CON
with 8403h.

End

Read I2C_STAT.

No

Yes

Is
ACK returned

(NACK=0)
?

STT and STP are
cleared to 0 by hardware.

No

Yes

Reprogram
the registers.

STT = 1
(new start)

?

Yes

No STP = 1
?

No

Are
n bytes

transferred
(ARDY=1)

?

Set appropriate values to every
bit of I2C_CON. I2C_EN bit must be set
to 1 to take I2C out of reset condition. Setting
I2C_EN and other mode bits can be done
simultaneously.

Yes

[EXPECTED COMMAND]
At the beginning,
(STT,STP) = (1.0), (1.1), (1.0), (1.1)
in the middle,
(STT, STP) = (0.0), (0.1)
At the end,
(STT, STP) = (0.1)

[EXPECTED I2C_IE]
I2C_IE = 11111b

Yes

Is
received data
in I2C_DATA
(RRDY=0)

?

No No

Yes

Read I2C_DATA.

The I2C goes into slave receiver mode.

Read I2C_STAT.

Is
interrupt
received

?
No

Flowcharts

I2C Controller52 SPRU681A

Figure 18. Master Transmitter Mode, RM = 0, DMA

Start

Is
Bus free
(BB=0)

?

Write I2C_CON
with 8603h.

End

Read I2C_STAT.

No

Yes

Is
ACK returned

(NACK=0)
?

STT and STP are
cleared to 0 by hardware.

No

Yes

Reprogram
the registers.

STT = 1
(new start)

?

Yes

No STP = 1
?

No

Are
n bytes

transferred
(ARDY=1)

?

Set appropriate values to every
bit of I2C_CON. I2C_EN bit must be set
to 1 to take I2C out of reset condition. Setting
I2C_EN and other mode bits can be done
simultaneously.

Yes

[EXPECTED COMMAND]
At the beginning,
(STT,STP) = (1.0), (1.1), (1.0), (1.1)
in the middle,
(STT, STP) = (0.0), (0.1)
At the end,
(STT, STP) = (0.1)

[EXPECTED I2C_IE]
I2C_IE = 00111b

Yes

Is
DMA

interrupt
received

?

No

No

Yes

The I2C goes into slave receiver mode.

Read I2C_STAT.

Is I2C
interrupt
received

?
No

Take necessary
actions.

Flowcharts

53I2C ControllerSPRU681A

Figure 19. Master Receiver Mode, RM = 0, DMA

Start

Is
Bus free
(BB=0)

?

Write I2C_CON
with 8403h.

End

Read I2C_STAT.

No

Yes

Is
ACK returned

(NACK=0)
?

STT and STP are
cleared to 0 by hardware.

No

Yes

Reprogram
the registers.

STT = 1
(new start)

?

Yes

No STP = 1
?

No

Are
n bytes

transferred
(ARDY=1)

?

Set appropriate values to every
bit of I2C_CON. I2C_EN bit must be set
to 1 to take I2C out of reset condition. Setting
I2C_EN and other mode bits can be done
simultaneously.

Yes

[EXPECTED COMMAND]
At the beginning,
(STT,STP) = (1.0), (1.1), (1.0), (1.1)
in the middle,
(STT, STP) = (0.0), (0.1)
At the end,
(STT, STP) = (0.1)

[EXPECTED I2C_IE]
I2C_IE = 00111b

Yes

Is
DMA

interrupt
received

?

No

No

Yes

The I2C goes into slave receiver mode.

Read I2C_STAT.

Is I2C
interrupt
received

?
No

Take necessary
actions.

Flowcharts

I2C Controller54 SPRU681A

Figure 20. Slave Transmitter/Receiver Mode-Polling

Write data
(XRDY=1)

?

Read I2C_STAT.

Start

Read I2C_DATA.Write I2C_DATA.

No

Yes

No

Yes

Read data
(RRDY=1)

?

Flowcharts

55I2C ControllerSPRU681A

Figure 21. Slave Transmitter/Receiver Mode-Interrupt

Read I2C_IV.

Start

Write I2C_DATA. Read I2C_DATA.

No

Yes

No

Yes

Transmit
(I2C_IV=5)

?

Is
interrupt
received

?

Receive
(I2C_IV=4)

?

Yes

No

Yes

I2C Controller56 SPRU681A

A-1

Appendix A

Revision History

This document was revised to SPRU681A from SPRU681, which was
released in October 2003. The scope of the revisions was limited to technical
changes as described in A.1. This appendix lists only revisions made in the
most recent version.

A.1 Changes Made in This Revision

The following changes were made in this revision:

Page Additions/Modifications/Deletions

19 Changed ICLK range from 8MHz to 16 MHz to 7 MHz to 12 MHz

Appendix A

Index

2 SPRU681A

Index

A
arbitration, I2C 16

C
clock

generation, I2C 17
synchronization, I2C 17

D
DMA, events, I2C 20

F
filter, noise, I2C prescaler 19

I
I2C

arbitration 16
clock

generation 17
synchronization 17

controller
features 18
master 18
slave 18

DMA events 20
interrupt, types 19
master

receiver 16
transmitter 15

operation 14
prescaler

description 19

noise filter 19
programming 42
receiver, slave 16
reset 19
serial data formats 14
transmitter, slave 16

interrupt, I2C 19

M
master, I2C controller 18

N
noise, filter, I2C prescaler 19

O
operation, I2C 14

P
prescaler, I2C

description 19
noise filter 19

programming, I2C 42

R
receiver, I2C

master 16
slave 16

reset, I2C 19

S
slave, I2C controller 18

Index

3SPRU681A

T
transmitter, I2C

master 15
slave 16

	Title Page - SPRU681B
	IMPORTANT NOTICE
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Figures
	Tables
	I2C Controller
	1 I2C Protocol Description
	1.1 Functional Overview
	1.2 I2C Controller Signals
	1.3 I2C Bus Principal
	1.4 I2C Operation
	1.4.1 Serial Data Formats
	1.4.2 Master Transmitter
	1.4.3 Master Receiver
	1.4.4 Slave Transmitter
	1.4.5 Slave Receiver
	1.4.6 Arbitration
	1.4.7 I2C Clock Generation and Synchronization

	2 OMAP5910 I2C (Master/Slave I2C Controller)
	2.1 I2C Controller Features
	2.2 Data Format
	2.3 I2C Reset
	2.4 Prescaler (ICLK)
	2.4.1 Noise Filter

	2.5 I2C Interrupts
	2.6 DMA Events
	2.7 I2C Registers
	2.7.1 I2C Module Version Register (I2C_REV)
	2.7.2 I2C Interrupt Enable Register (I2C_IE)
	2.7.3 I2C Status Register (I2C_STAT)
	2.7.4 I2C Interrupt Vector Register (I2C_IV)
	2.7.5 I2C Buffer Configuration Register (I2C_BUF)
	2.7.6 I2C Data Counter Register (I2C_CNT)
	2.7.7 I2C Data Access Register (I2C_DATA)
	2.7.8 I2C Configuration Register (I2C_CON)
	2.7.9 I2C Own Address Register (I2C_OA)
	2.7.10 I2C_Slave Address Register (I2C_SA)
	2.7.11 I2C Clock Prescaler Register (I2C_PSC)
	2.7.12 I2C SCL Low-Time Control Register (I2C_SCLL)
	2.7.13 I2C SCL High-Time Control Register (I2C_SCLL)
	2.7.14 I2C System Test Register (I2C_SYSTEST)

	3 Programming
	3.1 Main Program

	4 Flowcharts

	Appendix A: Revision History
	A.1 Changes Made in This Revision

	Index
	A
	C
	D
	F
	I
	M
	N
	O
	P
	R
	S
	T

