# OMAP5912 Multimedia Processor Serial Interfaces Reference Guide

Literature Number: SPRU760C February 2006





#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from TI under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products         |                        | Applications       |                           |
|------------------|------------------------|--------------------|---------------------------|
| Amplifiers       | amplifier.ti.com       | Audio              | www.ti.com/audio          |
| Data Converters  | dataconverter.ti.com   | Automotive         | www.ti.com/automotive     |
| DSP              | dsp.ti.com             | Broadband          | www.ti.com/broadband      |
| Interface        | interface.ti.com       | Digital Control    | www.ti.com/digitalcontrol |
| Logic            | logic.ti.com           | Military           | www.ti.com/military       |
| Power Mgmt       | power.ti.com           | Optical Networking | www.ti.com/opticalnetwork |
| Microcontrollers | microcontroller.ti.com | Security           | www.ti.com/security       |
|                  |                        | Telephony          | www.ti.com/telephony      |
|                  |                        | Video & Imaging    | www.ti.com/video          |
|                  |                        | Wireless           | www.ti.com/wireless       |

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated

# Preface

# **Read This First**

### About This Manual

This document describes the serial interfaces of the OMAP5912 multimedia processor.

### Notational Conventions

This document uses the following conventions.

□ Hexadecimal numbers are shown with the suffix h. For example, the following number is 40 hexadecimal (decimal 64): 40h.

# **Related Documentation From Texas Instruments**

Documentation that describes the OMAP5912 device, related peripherals, and other technical collateral, is available in the OMAP5912 Product Folder on TI's website: www.ti.com/omap5912.

# Trademarks

OMAP and the OMAP symbol are trademarks of Texas Instruments.

# Contents

| 1 | SPI M | laster/S | lave                                             | 17 |
|---|-------|----------|--------------------------------------------------|----|
|   | 1.1   | Functio  | onal Description                                 | 17 |
|   | 1.2   | Interfa  | ce                                               | 19 |
|   | 1.3   | SPI Re   | gisters                                          | 19 |
|   | 1.4   | Protoc   | ol Description                                   | 28 |
|   |       | 1.4.1    | MCU-DSP Protocol                                 | 29 |
|   |       |          | MCU-DSP Transmit Protocol in Master Mode         | 29 |
|   |       |          | MCU-DSP Receive/Transmit Protocol in Master Mode | 31 |
|   |       |          | MCU-DSP Transmit Protocol in Slave Mode          | 33 |
|   |       |          | MCU-DSP Receive/Transmit Protocol in Slave Mode  | 35 |
|   |       | 1.4.2    | DMA Protocol                                     | 37 |
|   |       |          | DMA Transmit Protocol in Master Mode             | 37 |
|   |       |          | DMA Receive Protocol in Master Mode              | 39 |
|   |       |          | DMA Transmit and Receive Protocol in Master Mode | 41 |
|   |       |          | DMA Transmit Protocol in Slave Mode              | 43 |
|   |       |          | DMA Receive Protocol in Slave Mode               | 45 |
|   |       |          | DMA Transmit and Receive Protocol in Slave Mode  | 47 |
|   |       | 1.4.3    | Overflow/Underflow Interrupts                    | 49 |
|   |       |          | Overflow Interrupt Generation                    | 49 |
|   |       |          | Underflow Interrupt Generation                   | 50 |
|   |       | 1.4.4    | Transmission Modes                               | 52 |
|   | 15    | Idle an  | d Wake-Up Feature                                | 53 |
|   | 1.6   | Emulat   | ion Mode                                         | 55 |
|   | 17    | Reset    |                                                  | 55 |
|   |       |          |                                                  | 00 |
| 2 | I2C M | ultimas  | ter Peripheral                                   | 56 |
|   | 2.1   | Overvi   | ew                                               | 56 |
|   | 2.2   | Functio  | onal Overview                                    | 56 |
|   | 2.3   | I2C Co   | ntroller Features                                | 57 |
|   | 2.4   | I2C Ma   | aster/Slave Controller Signal Pads               | 57 |
|   | 2.5   | Operat   | ional Details                                    | 58 |
|   |       | 2.5.1    | I2C Reset                                        | 58 |
|   |       | 2.5.2    | I2C Bit Transfer                                 | 58 |
|   |       | 2.5.3    | Data Validity                                    | 59 |
|   |       | 2.5.4    | START and STOP Conditions                        | 60 |

| 2.6 | I2C Operation                                            | 60 |
|-----|----------------------------------------------------------|----|
|     | Serial Data Formats                                      | 60 |
|     | Master Transmitter                                       | 62 |
|     | Master Receiver                                          | 62 |
|     | Slave Transmitter                                        | 63 |
|     | Slave Receiver                                           | 63 |
|     | 2.6.1 Arbitration                                        | 63 |
|     | 2.6.2 I2C Clock Generation and I2C Clock Synchronization | 64 |
|     | 2.6.3 Prescaler (SCLK/ICLK)                              | 65 |
|     | 2.6.4 Noise Filter                                       | 65 |
|     | 2.6.5 I2C Interrupts                                     | 65 |
|     | 2.6.6 DMA Events                                         | 66 |
| 2.7 | Register Map                                             | 66 |
|     | Module Revision Number (REV)                             | 68 |
|     | Single Byte Data (SBD)                                   | 69 |
|     | Bus Busy (BB)                                            | 70 |
|     | Receive Overrun (ROVR)                                   | 70 |
|     | Transmit Underflow (XUDF)                                | 71 |
|     | Address As Slave (AAS)                                   | 71 |
|     | General Call (GC)                                        | 71 |
|     | Transmit Data Ry (XRDY)                                  | 72 |
|     | Receive Data Ry (RRDY)                                   | 72 |
|     | Register Access Ry (ARDY)                                | 73 |
|     | No Acknowledgment (NACK)                                 | 73 |
|     | Arbitration Lost (AL)                                    | 74 |
|     | Reset Done (RDONE)                                       | 74 |
|     | Receive DMA Channel Enable (RDMA EN)                     | 75 |
|     | Transmit DMA Channel Enable (XDMA EN)                    | 75 |
|     |                                                          | 76 |
|     | Transmit/Receive FIFO Data Value (DATA)                  | 76 |
|     | Soft Reset (SRST)                                        | 77 |
|     | I2C Module Enable (I2C EN)                               | 78 |
|     |                                                          | 79 |
|     | Start Byte (STB)                                         | 79 |
|     | Master/Slave Mode (MST)                                  | 79 |
|     | Transmitter/Receiver Mode (TRX)                          | 80 |
|     | Expand Address (XA)                                      | 80 |
|     | Stop Condition (STP)                                     | 81 |
|     | Start Condition (STT)                                    | 81 |
|     | 2.7.1 Own Address (OA)                                   | 82 |
|     | Slave Address (SA)                                       | 82 |
|     | SCL Low Time (SCLL)                                      | 83 |
|     | SCL High Time (SCLH)                                     | 84 |
|     | System Test Enable (ST EN)                               | 85 |
|     |                                                          |    |

|   |       | Free Running Mode After Breakpoint (FREE)              | 85    |
|---|-------|--------------------------------------------------------|-------|
|   |       | Test Mode Select (TMODE)                               | 85    |
|   |       | Set Status Bits (SSB)                                  | 86    |
|   |       | SCL Line Sense Input Value (SCL_I)                     | 86    |
|   |       | SCL Line Drive Output Value (SCL_O)                    | 87    |
|   |       | SDA Line Sense Input Value (SDA_I)                     | 87    |
|   |       | SDA Line Drive Output Value (SDA_O)                    | 87    |
|   | 2.8   | Programming Guidelines                                 | 88    |
|   |       | 2.8.1   Main Program                                   | 88    |
|   |       | Module Configuration Before Enabling the Module        | 88    |
|   |       | Initialization Procedure                               | 88    |
|   |       | Configure Slave Address and Data Counter Registers     | 88    |
|   |       | Initiate a Transfer                                    | 88    |
|   |       |                                                        | 88    |
|   |       | Poll Transmit Data                                     | 89    |
|   | 2.9   | Interrupt Subroutines                                  | 89    |
|   | 2.10  | Flow Diagrams                                          | 90    |
| 3 | Micro | Wire Interface                                         | 99    |
|   | 3.1   | MicroWire Registers                                    | 99    |
|   | 3.2   | Protocol Description                                   | . 106 |
|   | 3.3   | Example of Protocol Using a Serial EEPROM (XL93LC66)   | . 107 |
|   |       | 3.3.1 Read Cycle                                       | . 107 |
|   |       | 3.3.2 Write Cycle                                      | . 108 |
|   | 3.4   | Example of Protocol Using an LCD Controller (COP472-3) | . 109 |
|   |       | 3.4.1 Loading Sequence                                 | . 110 |
|   | 3.5   | Example of Protocol Using Autotransmit Mode            | . 111 |
|   | 3.6   | Example of Autotransmit Mode With DMA Support          | . 113 |
| 4 | Multi | channel Serial Interfaces                              | . 114 |
|   | 4.1   | Communication Protocol                                 | . 115 |
|   |       | 4.1.1 Configuration Parameters                         | . 115 |
|   |       | Slave/Master Control                                   | . 115 |
|   |       | Single-Channel/Multichannel                            | . 115 |
|   |       | Short/Long Framing                                     | . 115 |
|   |       | Normal/Alternate Frame Synchronization                 | . 116 |
|   |       | Continuous/Burst Mode                                  | . 116 |
|   |       | Normal/Inverted Clock                                  | . 116 |
|   |       | Normal/Inverted Frame Synchronization                  | . 116 |
|   |       | Channel Used                                           | . 116 |
|   |       | Word Size                                              | . 117 |
|   |       | Frame Size                                             | . 117 |
|   |       |                                                        |       |
|   |       | Transmission Clock Frequency                           | . 117 |

|   |     | 4.1.2    | Sample Setup for Communication m-Law Interface Using Interrupts | . 118 |
|---|-----|----------|-----------------------------------------------------------------|-------|
|   |     |          | MCSI Configuration                                              | . 118 |
|   |     |          | Transmit Data Loading (TX_INFISR)                               | . 118 |
|   |     |          | Received Data Loading (RX_INT ISR)                              | . 118 |
|   |     |          | Stop MCSI                                                       | . 118 |
|   |     | 4.1.3    | Interface Management                                            | . 119 |
|   |     |          | Interrupts Generation                                           | . 119 |
|   |     |          | Receive Interrupt                                               | . 120 |
|   |     |          | Transmit Interrupt                                              | . 120 |
|   |     |          | Frame Duration Error Interrupt                                  | . 121 |
|   |     | 4.1.4    | Interrupt Programming                                           | . 123 |
|   |     | 4.1.5    | DMA Channel Operation                                           | . 123 |
|   |     |          | Transmit DMA Transfers                                          | . 124 |
|   |     |          | Receive DMA Transfers                                           | . 124 |
|   |     | 4.1.6    | Interface Activation                                            | . 125 |
|   |     |          | Start Sequence                                                  | . 125 |
|   |     |          | Stop Sequence                                                   | . 126 |
|   |     |          | Software Reset                                                  | . 126 |
|   |     | 4.1.7    | Functional Mode Timing Diagrams                                 | . 126 |
|   |     |          | Single-Channel/Alternate Long Framing                           | . 126 |
|   |     |          | Single-Channel/Alternate Long Framing/Burst                     | . 127 |
|   |     |          | Single-Channel/Alternate Short Framing/Continuous/Burst         | . 127 |
|   |     |          | Multichannel/Normal Short Framing/Channel4 Disable              | . 127 |
|   |     |          | Multichannel/Alternate Long Framing/Continuous/Burst            | . 128 |
|   |     |          | Multichannel/Normal Short Framing/Burst                         | . 128 |
|   |     |          | Single-Channel/Normal Short Framing                             | . 128 |
|   |     |          | Single-Channel/Normal Short Framing/Burst                       | . 129 |
|   |     |          | Single-Channel/Normal Long Framing                              | . 129 |
|   |     |          | Single-Channel/Normal Long Framing/Burst                        | . 129 |
|   |     |          | Single-Channel/Normal Long Framing/Continuous                   | . 130 |
|   |     |          | Single-Channel/Alternate Short Framing                          | . 130 |
|   |     |          | Single-Channel/Alternate Short Framing/Burst                    | . 130 |
|   | 4.2 | MCSI F   | Register Descriptions                                           | . 131 |
|   |     |          | 5                                                               |       |
| 5 | MCS | 11 and M | ICSI2                                                           | . 138 |
|   | 5.1 | MCSI1    | Pin Description                                                 | . 138 |
|   | 5.2 | MCSI1    | Interrupt Mapping                                               | . 139 |
|   | 5.3 | MCSI1    | DMA Request Mapping                                             | . 140 |
|   | 5.4 | MCSI2    | Pin Description                                                 | . 140 |
|   | 5.5 | MCSI2    | Interrupt Mapping                                               | . 141 |
|   | 5.6 | MCSI2    | DMA Request Mapping                                             | . 142 |

| 6 | UART | s        |                                              | 143 |
|---|------|----------|----------------------------------------------|-----|
|   | 6.1  | Main Fe  | eatures                                      | 144 |
|   |      | 6.1.1    | UART/Modem Functions                         | 145 |
|   |      | 6.1.2    | IrDA Functions                               | 145 |
|   | 62   | Control  | and Status Registers Description             | 147 |
|   | 0.2  | 6.2.1    | UART IrDA Registers Mapping                  | 147 |
|   | 63   | Interrur | of Enable Register (IER)                     | 157 |
|   | 0.0  | interrap | UART Modes IER                               | 157 |
|   |      |          | IrDA Modes IF                                | 158 |
|   |      | 6.3.1    | Divisor Latches (DLL DLH)                    | 162 |
|   | 64   | Transm   | hit Frame Length Register (TXFLL_TXFLH)      | 168 |
|   | 0    | 641      | Received Frame Length Register (RXFLL_RXFLH) | 168 |
|   |      | 642      | Status FIFO Register (SFREGI SFREGH)         | 170 |
|   | 6.5  | Differer | t Modes of Operation                         | 174 |
|   | 0.0  | 651      | LIART Modes                                  | 175 |
|   |      | 652      | SIR Mode                                     | 176 |
|   |      | 0.0.2    | Frame Format                                 | 177 |
|   |      |          | Asynchronous Transparency                    | 177 |
|   |      |          | Abort Sequence                               | 178 |
|   |      |          | Pulse Shaning                                | 178 |
|   |      |          | Encoder                                      | 178 |
|   |      |          | Decoder                                      | 179 |
|   |      |          | IR Address Checking                          | 179 |
|   |      | 653      | MIR Mode                                     | 179 |
|   |      | 654      | MIR Transmit Frame Format                    | 180 |
|   |      | 0.0.4    | MIR Encoder/Decoder                          | 180 |
|   |      |          | SIP Generation                               | 181 |
|   |      | 655      | FIR Mode                                     | 182 |
|   | 6.6  | Functio  | nal Description                              | 182 |
|   | 0.0  | 661      | Trigger Levels                               | 182 |
|   |      | 662      | Interrunts                                   | 182 |
|   |      | 0.0.2    | LIART Mode Interrunts                        | 183 |
|   |      |          | IrDA Mode Interrupts                         | 184 |
|   |      |          | Wake-I In Interrunt                          | 185 |
|   |      | 663      | FIFO Interrupt Mode Operation                | 185 |
|   |      | 664      | FIFO Polled Mode Operation                   | 186 |
|   |      | 665      | FIFO DMA Mode Operation                      | 186 |
|   |      | 0.0.0    | DMA Signaling                                | 186 |
|   |      |          | DMA Transfers (DMA Mode 1 2 or 3)            | 187 |
|   |      | 666      | Sleep Mode                                   | 190 |
|   |      | 0.0.0    | LIART Modes                                  | 190 |
|   |      |          | IrDA Modes                                   | 101 |
|   |      | 667      | Idle Modes                                   | 101 |
|   |      | 0.0.7    |                                              | 191 |

|          |                                                                                             | 6.6.8                                                                                                                                                              | Break and Time-Out Conditions                                                                                                                                                                                                                                                                                                | 192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                             |                                                                                                                                                                    | Time-Out Counter                                                                                                                                                                                                                                                                                                             | 192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                             |                                                                                                                                                                    | Break Condition                                                                                                                                                                                                                                                                                                              | 192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                             | 6.6.9                                                                                                                                                              | Programmable Baud Rate Generator                                                                                                                                                                                                                                                                                             | 192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                             | 6.6.10                                                                                                                                                             | Hardware Flow Control                                                                                                                                                                                                                                                                                                        | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                             |                                                                                                                                                                    | Auto-RTS                                                                                                                                                                                                                                                                                                                     | 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                             |                                                                                                                                                                    | Auto-CTS                                                                                                                                                                                                                                                                                                                     | 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                             | 6.6.11                                                                                                                                                             | Software Flow Control                                                                                                                                                                                                                                                                                                        | 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                             |                                                                                                                                                                    | Receive (RX)                                                                                                                                                                                                                                                                                                                 | 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                             |                                                                                                                                                                    | Transmit (TX)                                                                                                                                                                                                                                                                                                                | 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                             | 6.6.12                                                                                                                                                             | Autobauding Mode                                                                                                                                                                                                                                                                                                             | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                             | 6.6.13                                                                                                                                                             | Frame Closing                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                             | 6.6.14                                                                                                                                                             | Store and Controlled Transmission (SCT)                                                                                                                                                                                                                                                                                      | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                             | 6.6.15                                                                                                                                                             | Underrun During Transmission                                                                                                                                                                                                                                                                                                 | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                             | 6.6.16                                                                                                                                                             | Overrun During Receive                                                                                                                                                                                                                                                                                                       | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                             | 6.6.17                                                                                                                                                             | Status FIFO                                                                                                                                                                                                                                                                                                                  | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | 6.7                                                                                         | UART                                                                                                                                                               | Configuration Example                                                                                                                                                                                                                                                                                                        | 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                             | 6.7.1                                                                                                                                                              | UART Software Reset                                                                                                                                                                                                                                                                                                          | 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                             | 6.7.2                                                                                                                                                              | UART FIFO Configuration                                                                                                                                                                                                                                                                                                      | 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                             | 6.7.3                                                                                                                                                              | Baud Rate Data and Stop Configuration                                                                                                                                                                                                                                                                                        | 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7        | нро                                                                                         | and 1-M                                                                                                                                                            | Vire Protocols                                                                                                                                                                                                                                                                                                               | 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| '        | 7 1                                                                                         | Functio                                                                                                                                                            | anal Description                                                                                                                                                                                                                                                                                                             | 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | 1.1                                                                                         | 7 1 1                                                                                                                                                              | Receive and Transmit Operation                                                                                                                                                                                                                                                                                               | 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                             | 712                                                                                                                                                                | HDQ Mode (Default)                                                                                                                                                                                                                                                                                                           | 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | 70                                                                                          |                                                                                                                                                                    | Mode (SDO)                                                                                                                                                                                                                                                                                                                   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | 1.2                                                                                         | 1-Wire                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                              | . 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 7.2<br>7.3                                                                                  | 1-Wire<br>1-Wire                                                                                                                                                   | Bit Mode Operation                                                                                                                                                                                                                                                                                                           | 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | 7.2<br>7.3                                                                                  | 1-Wire<br>1-Wire<br>7.3.1                                                                                                                                          | Bit Mode Operation                                                                                                                                                                                                                                                                                                           | 207<br>209<br>209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | 7.2                                                                                         | 1-Wire<br>1-Wire<br>7.3.1<br>7.3.2                                                                                                                                 | Bit Mode Operation                                                                                                                                                                                                                                                                                                           | 207<br>209<br>209<br>211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | 7.3                                                                                         | 1-Wire<br>1-Wire<br>7.3.1<br>7.3.2<br>7.3.3                                                                                                                        | Bit Mode Operation<br>Timing Diagrams<br>Write State Diagram<br>Read State Diagram                                                                                                                                                                                                                                           | 207<br>209<br>209<br>211<br>211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | 7.3                                                                                         | 1-Wire<br>1-Wire<br>7.3.1<br>7.3.2<br>7.3.3<br>7.3.4                                                                                                               | Bit Mode Operation<br>Timing Diagrams<br>Write State Diagram<br>Read State Diagram<br>Status Flags                                                                                                                                                                                                                           | 207<br>209<br>209<br>211<br>211<br>212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | 7.3                                                                                         | 1-Wire<br>1-Wire<br>7.3.1<br>7.3.2<br>7.3.3<br>7.3.4<br>7.3.5                                                                                                      | Bit Mode Operation .<br>Timing Diagrams .<br>Write State Diagram .<br>Read State Diagram .<br>Status Flags .<br>Interrupts                                                                                                                                                                                                   | 207<br>209<br>209<br>211<br>211<br>212<br>212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | 7.3                                                                                         | 1-Wire<br>1-Wire<br>7.3.1<br>7.3.2<br>7.3.3<br>7.3.4<br>7.3.5<br>Power-                                                                                            | Bit Mode Operation .<br>Timing Diagrams .<br>Write State Diagram .<br>Read State Diagram .<br>Status Flags .<br>Interrupts .<br>Down Mode                                                                                                                                                                                    | 207<br>209<br>209<br>211<br>211<br>212<br>212<br>213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | 7.2<br>7.3<br>7.4<br>7.5                                                                    | 1-Wire<br>1-Wire<br>7.3.1<br>7.3.2<br>7.3.3<br>7.3.4<br>7.3.5<br>Power-<br>HDQ a                                                                                   | Bit Mode Operation .<br>Timing Diagrams .<br>Write State Diagram .<br>Read State Diagram .<br>Status Flags .<br>Interrupts .<br>Down Mode .<br>nd 1-Wire Battery Monitoring Serial Interface .                                                                                                                               | 207<br>209<br>209<br>211<br>211<br>212<br>212<br>213<br>213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 7.2<br>7.3<br>7.4<br>7.5<br>7.6                                                             | 1-Wire<br>1-Wire<br>7.3.1<br>7.3.2<br>7.3.3<br>7.3.4<br>7.3.5<br>Power-<br>HDQ a<br>Softwa                                                                         | Bit Mode Operation .<br>Timing Diagrams .<br>Write State Diagram .<br>Read State Diagram .<br>Status Flags .<br>Interrupts .<br>Down Mode .<br>nd 1-Wire Battery Monitoring Serial Interface .<br>re Interface .                                                                                                             | 207<br>209<br>209<br>211<br>211<br>212<br>212<br>213<br>213<br>214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | 7.2<br>7.3<br>7.4<br>7.5<br>7.6                                                             | 1-Wire<br>1-Wire<br>7.3.1<br>7.3.2<br>7.3.3<br>7.3.4<br>7.3.5<br>Power-<br>HDQ a<br>Softwa                                                                         | Bit Mode Operation<br>Timing Diagrams<br>Write State Diagram<br>Read State Diagram<br>Status Flags<br>Interrupts<br>Down Mode<br>nd 1-Wire Battery Monitoring Serial Interface<br>re Interface                                                                                                                               | 207<br>209<br>211<br>211<br>212<br>212<br>213<br>213<br>214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8        | 7.4<br>7.5<br>7.6<br>Fram                                                                   | 1-Wire<br>1-Wire<br>7.3.1<br>7.3.2<br>7.3.3<br>7.3.4<br>7.3.5<br>Power-<br>HDQ a<br>Softwa                                                                         | Bit Mode Operation .<br>Timing Diagrams .<br>Write State Diagram .<br>Read State Diagram .<br>Status Flags .<br>Interrupts .<br>Down Mode .<br>nd 1-Wire Battery Monitoring Serial Interface .<br>re Interface                                                                                                               | 207<br>209<br>219<br>211<br>211<br>212<br>212<br>213<br>213<br>214<br><b> 217</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8        | 7.4<br>7.5<br>7.6<br><b>Fram</b><br>8.1                                                     | 1-Wire<br>1-Wire<br>7.3.1<br>7.3.2<br>7.3.3<br>7.3.4<br>7.3.5<br>Power-<br>HDQ a<br>Softwa<br>Feature                                                              | Bit Mode Operation<br>Timing Diagrams<br>Write State Diagram<br>Read State Diagram<br>Status Flags<br>Interrupts<br>Down Mode<br>nd 1-Wire Battery Monitoring Serial Interface<br>re Interface<br>tment Counter<br>es                                                                                                        | 207<br>209<br>219<br>211<br>212<br>212<br>213<br>213<br>214<br><b> 217</b><br>217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8        | 7.4<br>7.5<br>7.6<br><b>Fram</b><br>8.1<br>8.2                                              | 1-Wire<br>1-Wire<br>7.3.1<br>7.3.2<br>7.3.3<br>7.3.4<br>7.3.5<br>Power-<br>HDQ a<br>Softwa<br>Feature<br>Synchr                                                    | Bit Mode Operation<br>Timing Diagrams<br>Write State Diagram<br>Read State Diagram<br>Status Flags<br>Interrupts<br>Down Mode<br>nd 1-Wire Battery Monitoring Serial Interface<br>re Interface<br>tment Counter<br>es<br>onization and Counter Control                                                                       | 207<br>209<br>211<br>211<br>212<br>212<br>213<br>213<br>214<br><b> 217</b><br>217<br>217<br>217<br>217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8        | 7.2<br>7.3<br>7.4<br>7.5<br>7.6<br><b>Fram</b><br>8.1<br>8.2                                | 1-Wire<br>1-Wire<br>7.3.1<br>7.3.2<br>7.3.3<br>7.3.4<br>7.3.5<br>Power-<br>HDQ a<br>Softwa<br>Feature<br>Synchr<br>8.2.1                                           | Bit Mode Operation<br>Timing Diagrams<br>Write State Diagram<br>Read State Diagram<br>Status Flags<br>Interrupts<br>Down Mode<br>nd 1-Wire Battery Monitoring Serial Interface<br>re Interface<br>tment Counter<br>es<br>tonization and Counter Control<br>Synchronization                                                   | 207<br>209<br>211<br>212<br>212<br>213<br>213<br>213<br>214<br><b> 217</b><br>217<br>217<br>217<br>218<br>218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8        | 7.2<br>7.3<br>7.4<br>7.5<br>7.6<br><b>Fram</b><br>8.1<br>8.2<br>8.3                         | 1-Wire<br>1-Wire<br>7.3.1<br>7.3.2<br>7.3.3<br>7.3.4<br>7.3.5<br>Power-<br>HDQ a<br>Softwa<br>Feature<br>Synchr<br>8.2.1<br>FAC In                                 | Bit Mode Operation .<br>Timing Diagrams .<br>Write State Diagram .<br>Read State Diagram .<br>Status Flags .<br>Interrupts .<br>Down Mode .<br>nd 1-Wire Battery Monitoring Serial Interface .<br>re Interface .<br><b>tment Counter .</b><br>es .<br>ronization and Counter Control .<br>Synchronization .<br>terrupt       | 207<br>209<br>219<br>211<br>212<br>212<br>213<br>213<br>213<br>214<br><b> 217</b><br>217<br>217<br>218<br>219<br>219<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>212<br>213<br>213<br>214<br>217<br>217<br>212<br>213<br>214<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>218<br>219<br>218<br>219<br>218<br>219<br>218<br>219<br>218<br>219<br>218<br>219                                                                                                                 |
| 8        | 7.4<br>7.5<br>7.6<br><b>Fram</b><br>8.1<br>8.2<br>8.3<br>8.4                                | 1-Wire<br>1-Wire<br>7.3.1<br>7.3.2<br>7.3.3<br>7.3.4<br>7.3.5<br>Power-<br>HDQ a<br>Softwa<br>Feature<br>Synchr<br>8.2.1<br>FAC In<br>FAC CI                       | Bit Mode Operation .<br>Timing Diagrams .<br>Write State Diagram .<br>Read State Diagram .<br>Status Flags .<br>Interrupts .<br>Down Mode .<br>nd 1-Wire Battery Monitoring Serial Interface .<br>re Interface .<br><b>tment Counter .</b><br>es                                                                             | 207<br>209<br>219<br>211<br>212<br>212<br>213<br>213<br>213<br>214<br><b> 217</b><br>217<br>217<br>218<br>219<br>220<br>221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8        | 7.2<br>7.3<br>7.4<br>7.5<br>7.6<br><b>Fram</b><br>8.1<br>8.2<br>8.3<br>8.4<br>8.5           | 1-Wire<br>1-Wire<br>7.3.1<br>7.3.2<br>7.3.3<br>7.3.4<br>7.3.5<br>Power-<br>HDQ a<br>Softwa<br>Feature<br>Synchr<br>8.2.1<br>FAC In<br>FAC CI<br>Softwa             | Bit Mode Operation<br>Timing Diagrams<br>Write State Diagram<br>Read State Diagram<br>Status Flags<br>Interrupts<br>Down Mode<br>nd 1-Wire Battery Monitoring Serial Interface<br>re Interface<br>tment Counter<br>es<br>ronization and Counter Control<br>Synchronization<br>terrupt<br>locks and Reset<br>re Interface     | 207<br>209<br>211<br>211<br>212<br>212<br>213<br>213<br>213<br>214<br>217<br>217<br>217<br>218<br>219<br>220<br>221<br>221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>8</b> | 7.2<br>7.3<br>7.4<br>7.5<br>7.6<br><b>Fram</b><br>8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>vision | 1-Wire<br>1-Wire<br>7.3.1<br>7.3.2<br>7.3.3<br>7.3.4<br>7.3.5<br>Power-<br>HDQ a<br>Softwa<br>Feature<br>Synchr<br>8.2.1<br>FAC In<br>FAC CI<br>Softwa<br>History. | Bit Mode Operation .<br>Timing Diagrams<br>Write State Diagram<br>Read State Diagram<br>Status Flags<br>Interrupts<br>Down Mode<br>nd 1-Wire Battery Monitoring Serial Interface<br>re Interface<br>tment Counter<br>es<br>tonization and Counter Control<br>Synchronization .<br>terrupt<br>locks and Reset<br>re Interface | 207<br>209<br>209<br>211<br>212<br>212<br>213<br>213<br>213<br>213<br>214<br><b> 217</b><br>217<br>217<br>218<br>219<br>220<br>221<br>221<br>221<br>221<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>213<br>214<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>217<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>212<br>221<br>221<br>221<br>221<br>221<br>221<br>221<br>221 |

# Figures

| 1  | SPI Master/Slave Block Diagram                                                        | 18 |
|----|---------------------------------------------------------------------------------------|----|
| 2  | Transmission Example                                                                  | 26 |
| 3  | MCU-DSP Transmit Protocol in Master Mode With Cli = 0, CEi = 0and CPi = 0             |    |
| 4  | MCU-DSP Receive Transmit Protocol in Master Mode With Cli = 0, CEi = 0, and CPi = 0   | 32 |
| 5  | MCU-DSP Transmit Protocol in Slave Mode With Cli = 0, CEi = 0 and CPi = 0             | 34 |
| 6  | MCU-DSP RX/TX Protocol in Slave Mode With Cli = 0, CEi = 0 and CPi = 0                | 36 |
| 7  | DMA TX Protocol in Master Mode With Cli = 0, CEi = 0 and CPi = 0                      | 38 |
| 8  | DMA Receive Protocol in Master Mode With Cli = 0, CEi = 0 and CPi = 0                 | 40 |
| 9  | DMA Transmit and Receive Protocol in Master Mode With Cli = 0, CEi = 0<br>and CPi = 0 | 42 |
| 10 | DMA Transmit Protocol in Slave Mode With Cli = 0, CEi = 0 and CPi = 0                 | 44 |
| 11 | DMA Receive Protocol in Slave Mode With Cli = 0, CEi = 0 and CPi = 0                  | 46 |
| 12 | DMA Transmit and Receive Protocol in Slave Mode With Cli = 0, CEi = 0<br>and CPi = 0  | 48 |
| 13 | Example of an Overflow Generation With Cli = 0, CEi = 0 and CPi = 0                   | 50 |
| 14 | Example of an Underflow Generation With Cli = 0, CEi = 0 and CPi = 0                  | 51 |
| 15 | Example of a Transmission With CPi = 0                                                | 52 |
| 16 | Example of a Transmission With CPi = 1                                                | 53 |
| 17 | I2C System Overview                                                                   | 56 |
| 18 | Bit Transfer on the I2C Bus                                                           | 59 |
| 19 | Start and Stop Condition Events                                                       | 60 |
| 20 | I2C Data Transfer                                                                     | 61 |
| 21 | I2C Data Transfer Formats                                                             | 62 |
| 22 | Arbitration Procedure Between Two Master Transmitters                                 | 64 |
| 23 | Synchronization of Two I2C Clock Generators                                           | 65 |
| 24 | Synchronization of Two I2C Clock Generators                                           | 65 |
| 25 | Setup Procedure                                                                       | 90 |
| 26 | Master Transmitter Mode, Polling                                                      | 91 |
| 27 | Master Receiver Mode, Polling                                                         | 92 |
| 28 | Master Transmitter Mode, Interrupt                                                    | 93 |
| 29 | Master Receiver Mode, Interrupt                                                       | 94 |
| 30 | Master Transmitter Mode, DMA                                                          | 95 |
| 31 | Master Receiver Mode, DMA                                                             | 96 |
| 32 | Slave Transmitter/Receiver Mode, Polling                                              | 97 |
| 33 | Slave Transmitter/Receiver Mode, Interrupt                                            | 98 |

10 *OMAP5912* 

\_

| 34 | Block Diagram                                             | . 99 |
|----|-----------------------------------------------------------|------|
| 35 | Behavior of an X25C02 EEPROM Read Cycle                   | 106  |
| 36 | Behavior of an XL93LC66 EEPROM Read Cycle                 | 107  |
| 37 | Read Cycle in Autotransmit Mode                           | 112  |
| 38 | Communication m-Law Interface Interrupts Waveform Example | 119  |
| 39 | Receive Interrupt Timing Diagram                          | 120  |
| 40 | Transmit Interrupt Timing Diagram                         | 121  |
| 41 | Frame Duration Error—Too Many (Long)                      | 122  |
| 42 | Frame Duration Error—Too Few (Short)                      | 122  |
| 43 | Transmit DMA Transfers                                    | 124  |
| 44 | Receive DMA Transfers                                     | 125  |
| 45 | Single-Channel/Alternate Long Framing                     | 126  |
| 46 | Single-Channel/Alternate Long Framing/Burst               | 127  |
| 47 | Single-Channel/Alternate Short Framing/Continuous/Burst   | 127  |
| 48 | Multichannel/Normal Short Framing/Channel4 Disable        | 127  |
| 49 | Multichannel/Alternate Long Framing/Continuous/Burst      | 128  |
| 50 | Multichannel/Normal Short Framing/Burst                   | 128  |
| 51 | Single-Channel/Normal Short Framing                       | 128  |
| 52 | Single-Channel/Normal Short Framing/Burst                 | 129  |
| 53 | Single-Channel/Normal Long Framing                        | 129  |
| 54 | Single-Channel/Normal Long Framing/Burst                  | 129  |
| 55 | Single-Channel/Normal Long/Continuous                     | 130  |
| 56 | Single-Channel/Alternate Short Framing                    | 130  |
| 57 | Single-Channel/Alternate Short Framing/Burst              | 130  |
| 58 | MCSI1 Interface                                           | 139  |
| 59 | MCSI2 Interface                                           | 141  |
| 60 | UART IrDA Signals                                         | 143  |
| 61 | Functional Block Diagram                                  | 144  |
| 62 | UART Data Format                                          | 175  |
| 63 | IrDA SIR Frame Format                                     | 177  |
| 64 | IrDA Encoder Mechanism                                    | 178  |
| 65 | IrDA Decoder Mechanism                                    | 179  |
| 66 | MIR Transmit Frame Format                                 | 180  |
| 67 | MIR Baud-Rate Adjustment Mechanism                        | 181  |
| 68 | SIP Pulse                                                 | 181  |
| 69 | FIR Transmit Frame Format                                 | 182  |
| 70 | Receive FIFO IT Request Generation                        | 185  |
| 71 | Transmit FIFO IT Request Generation                       | 186  |
| 72 | Receive FIFO DMA Request Generation (32 Characters)       | 187  |
| 73 | Transmit FIFO DMA Request Generation (56 Spaces)          | 188  |
| 74 | Transmit FIFO DMA Request Generation (8 Spaces)           | 189  |
| 75 | Transmit FIFO DMA Request Generation (1 Space)            | 190  |
| 76 | Baud Rate Generator                                       | 193  |
| 77 | Autobaud State Machine                                    | 200  |
|    |                                                           |      |

### Figures

| 78 | Read Timing Diagram                                                       | 210 |
|----|---------------------------------------------------------------------------|-----|
| 79 | Reset Timing Diagram                                                      | 210 |
| 80 | Write Timing Diagram                                                      | 210 |
| 81 | Write State Machine #1                                                    | 211 |
| 82 | Read State Machine #1                                                     | 211 |
| 83 | HDQ and 1-Wire Overview                                                   | 213 |
| 84 | FAC Top-Level Diagram                                                     | 218 |
| 85 | FAC Module Counters and Clock Synchronization                             | 219 |
| 86 | Synchronization Circuit for Frame Synchronization and Frame Start Signals | 220 |
| 87 | Synchronization Circuit Waveforms                                         | 220 |

# **Tables**

| 1  | SPI Interface                                                 | . 19 |
|----|---------------------------------------------------------------|------|
| 2  | SPI Registers                                                 | . 20 |
| 3  | Identification Register Bit Description (SPI_REV—0x000)       | . 20 |
| 4  | System Configuration Register Bit Description (SPI_SCR—0x010) | . 21 |
| 5  | System Status Register Bit Description (SPI_SSR—0x014)        | . 21 |
| 6  | Interrupt Status Register Bit Description (SPI_ISR-0x018)     | . 22 |
| 7  | Interrupt Enable Register Bit Description (SPI_IER—0x01C)     | . 22 |
| 8  | Set Up SPI 1 Register Bit Description (SPI_SET1—0x024)        | . 23 |
| 9  | Set Up SPI 2 Register Bit Description (SPI_SET2—0x028)        | . 24 |
| 10 | Control SPI Register Bit Description (SPI_CTRL—0x02C)         | . 25 |
| 11 | Shift Status Register Bit Description (SPI_DSR—0x030)         | . 25 |
| 12 | Transmit Register Bit Description (SPI_TX—0x034)              | . 26 |
| 13 | Receive Register Bit Description (SPI_RX—0x038)               | . 27 |
| 14 | Test Register Bit Description (SPI_TEST—0x03C)                | . 27 |
| 15 | Signal Pads                                                   | . 58 |
| 16 | Reset State of I2C Signals                                    | . 58 |
| 17 | Electrical Specification of the Input/Output                  | . 59 |
| 18 | Register Map                                                  | . 67 |
| 19 | Module Revision Register(I2C_REV)                             | . 67 |
| 20 | Interrupt Enable Register(I2C_IE)                             | . 68 |
| 21 | Status Register(I2C_STAT)                                     | . 69 |
| 22 | ARDY Set Conditions                                           | . 73 |
| 23 | System Status Register(I2C_SYSS)                              | . 74 |
| 24 | Buffer Configuration Register(I2C_BUF)                        | . 75 |
| 25 | Data Counter Register(I2C_CNT)                                | . 75 |
| 26 | Data Access Register(I2C_DATA)                                | . 76 |
| 27 | I2C System Configuration Register(I2C_SYSC)                   | . 77 |
| 28 | I2C Configuration Register(I2C_CON)                           | . 78 |
| 29 | I2C Controller Transmitter/Receiver Operating Modes           | . 80 |
| 30 | STT Register Values                                           | . 81 |
| 31 | I2C Own Address Register(I2C_OA)                              | . 81 |
| 32 | I2C_SA: I2C Slave Address Register                            | . 82 |
| 33 | I2C Clock Prescaler Register(I2C_PSC)                         | . 82 |
| 34 | I2C SCL Low Time Control Register(I2C_SCLL)                   | . 83 |
| 35 | I2C SCL High Time Control Register(I2C_SCLH)                  | . 83 |
| 36 | System Test Register (I2C_SYSTEST)                            | . 84 |

*OMAP5912* 13

Tables

| 37 | Test Mode Select                                    | . 86 |
|----|-----------------------------------------------------|------|
| 38 | MicroWire Registers                                 | . 99 |
| 39 | Transmit Data Register (TDR)                        | 100  |
| 40 | Receive Data Register (RDR)                         | 100  |
| 41 | Control and Status Register (CSR)                   | 100  |
| 42 | Setup Register 1 (SR1)                              | 101  |
| 43 | Setup Register 2 (SR2)                              | 103  |
| 44 | Setup Register 3 (SR3)                              | 104  |
| 45 | Setup Register 4 (SR4) (R/W)                        | 104  |
| 46 | Setup Register 5 (SR5) (R/W)                        | 105  |
| 47 | Channel Selection Register (CHANNEL_USED_REG)       | 131  |
| 48 | Clock Frequency Register (CLOCK_FREQUENCY_REG)      | 132  |
| 49 | Oversized Frame Dimension Register (OVER_CLOCK_REG) | 132  |
| 50 | Interrupt Masks Register (INTERRUPTS_REG)           | 132  |
| 51 | Main Parameters Register (MAIN_PARAMETERSREG)       | 133  |
| 52 | Activity Control Register (CONTROL_REG)             | 134  |
| 53 | Interface Status Register (STATUS_REG)              | 135  |
| 54 | Receive Word Register (RX_REG[15:0])                | 136  |
| 55 | Transmit Word Register (TX_REG[15:0])               | 137  |
| 56 | MCSI1 Pin Descriptions                              | 138  |
| 57 | MCSI1 Interrupt Mapping                             | 140  |
| 58 | TDMA Request Mapping—MCSI1                          | 140  |
| 59 | MCSI2 Pin Descriptions                              | 140  |
| 60 | MCSI2 Interrupt Mapping                             | 142  |
| 61 | DMA Request Mapping—MCSI2                           | 142  |
| 62 | I/O Description                                     | 146  |
| 63 | UART IrDA Registers                                 | 148  |
| 64 | Receive Holding Register (RHR)                      | 149  |
| 65 | Transmit Holding Register (THR)                     | 149  |
| 66 | FIFO Control Register (FCR)                         | 150  |
| 67 | Supplementary Control Register (SCR)                | 151  |
| 68 | Line Control Register (LCR)                         | 152  |
| 69 | Line Status Register (LSR) (UART Mode)              | 153  |
| 70 | Line Status Register (LSR) (IR Mode)                | 154  |
| 71 | Supplementary Status Register (SSR)                 | 155  |
| 72 | Modem Control Register (MCR)                        | 155  |
| 73 | Modem Status Register (MSR)                         | 156  |
| 74 | Interrupt Enable Register (IER) (UART Mode)         | 157  |
| 75 | Interrupt Enable Register (IER) (IrDA Mode)         | 158  |
| 76 | Interrupt Identification Register (IIR) (UART Mode) | 159  |
| 77 | IrDA Mode Register (IIR)                            | 159  |
| 78 | Enhanced Feature Register (EFR)                     | 160  |
| 79 | Software Flow Control Options(EFR[0–3])             | 161  |
| 80 | XON1/ADDR1 Register                                 | 161  |
|    |                                                     |      |

14 *OMAP5912* 

SPRU760C

| 81  | XON2/ADDR2 Register                               | 162 |
|-----|---------------------------------------------------|-----|
| 82  | XOFF1 Register                                    | 162 |
| 83  | XOFF2 Register                                    | 162 |
| 84  | Scratchpad Register (SPR)                         | 162 |
| 85  | Divisor Latches LowRegister (DLL)                 | 163 |
| 86  | Divisor Latches High Register (DLH)               | 163 |
| 87  | Transmission Control Register (TCR)               | 163 |
| 88  | Trigger Level Register (TLR)                      | 163 |
| 89  | TX FIFO Trigger Level Setting Summary             | 164 |
| 90  | RX FIFO Trigger Level Setting Summary             | 164 |
| 91  | Mode Definition Register 1 (MDR1)                 | 164 |
| 92  | Mode Definition Register 2 (MDR2)                 | 166 |
| 93  | UART Autobauding Status Register (UASR)           | 167 |
| 94  | Transmit Frame Length Low Register (TXFLL)        | 168 |
| 95  | Transmit Frame Length High Register (TXFLH)       | 168 |
| 96  | Received Frame Length Low Register (RXFLL)        | 168 |
| 97  | Received Frame Length High Register (RXFLH)       | 169 |
| 98  | Status FIFO Line Status Register (SFLSR)          | 169 |
| 99  | Resume Register (RESUME)                          | 169 |
| 100 | Status FIFO Register Low (SFREGL)                 | 170 |
| 101 | Status FIFO Register High (SFREGH)                | 170 |
| 102 | BOF Control Register (BLR)                        | 170 |
| 103 | BOF Length Register (EBLR)                        | 171 |
| 104 | Auxiliary Control Register (ACREG)                | 171 |
| 105 | Module Version Register (MVR)                     | 172 |
| 106 | System Configuration Register (SYSC)              | 173 |
| 107 | System Status Register (SYSS)                     | 173 |
| 108 | Wake-Up Enable Register (WER)                     | 174 |
| 109 | UART Mode Interrupts                              | 183 |
| 110 | IrDA Mode Interrupts                              | 184 |
| 111 | UART BAUD Rate Settings (48-MHz Clock)            | 194 |
| 112 | IrDA Baud Rate Settings (48-MHz Clock)            | 195 |
| 113 | HDQ and 1-Wire Registers                          | 214 |
| 114 | HDQ/1–Wire TX Write Data Register (HDQ1W TX)      | 215 |
| 115 | HDQ/1–Wire RX Receive Buffer Register (HDQ1W RX)  | 215 |
| 116 | HDQ/1–Wire Control Register (HDQ1W CTRL)          | 215 |
| 117 | HDQ/1–Wire Interrupt Status Register (HDQ1W INTS) | 216 |
| 118 | FAC Registers                                     | 221 |
| 119 | Frame Adjustment Reference Count Register (FARC)  | 221 |
| 120 | Frame Start Count Register (FSC)                  | 222 |
| 121 | FAC Control and Configuration Register (CTRL)     | 223 |
| 122 | FAC Status Register (STATUS)                      | 223 |
| 123 | SYNC Counter Register (SYNC CNT)                  | 224 |
| 124 | Start Counter Register (START_CNT)                | 224 |
| 125 | Document Revision History                         | 225 |
|     |                                                   | 0   |

SPRU760C

*OMAP5912* 15

This page is intentionally left blank.

16 *OMAP5912* 

SPRU760C

This document describes the serial interfaces of the OMAP5912 multimedia processor.

# 1 SPI Master/Slave

# 1.1 Functional Description

The serial interface is a bidirectional, four-line interface dedicated to the transfer of data to and from external devices offering a four-line serial interface. The four-line interface consists of:

- The clock used to shift data in and out
- □ The device enable
- The data input
- The data output

This serial port is based on a looped shift register, thus allowing both transmit (PISO) and receive (SIPO) modes. It can operate in master or in slave mode using MCU-DSP or DMA protocol. It supports up to five serial devices. The serial data is sent MSB first.

The serial port is fully controlled by the OCP bus (data write, data read, and activation of serialization operations).



Figure 1. SPI Master/Slave Block Diagram

# 1.2 Interface

Table 1 describes the SPI interface.

| Table | 1. | SPI | Interface |
|-------|----|-----|-----------|
|       |    |     |           |

| SPI Integration |                                                                                    |     |
|-----------------|------------------------------------------------------------------------------------|-----|
| SPIF.SCK        | Shift register clock<br>Output in master mode<br>Input in slave mode               | Ι/Ο |
| SPIF.DIN        | Serial data Input in master mode<br>Serial data output in slave mode               | I/O |
| SPIF.DOUT       | Serial data output in master mode<br>Serial data Input in slave mode               | I/O |
|                 | Note: this signal is always driven by OMAP5912 regardless of master or slave mode. |     |
| SPIF.CS[0]      | SPI chip-select 0                                                                  | I/O |
|                 | Configured in output in master mode<br>Configured in input in slave mode           |     |
| SPIF.CS[3:1]    | External SPI chip-selects in master mode                                           | 0   |

# 1.3 SPI Registers

Start address: FFFB 0C00

Address of one register: Start address + offset address

Access supported: 16 or 32 bits

SPI uses little-endian addressing scheme.

The SPI offers input and output registers for loading data to serialize (transmit) and reading received data (receive).

|          | Base Address = 0xFFFB 0C00    |             |        |        |  |  |  |  |
|----------|-------------------------------|-------------|--------|--------|--|--|--|--|
| Mnemonic | Register Name                 | Size (Bits) | Access | Offset |  |  |  |  |
| SPI_REV  | Identification register       | 32          | R      | 0x000  |  |  |  |  |
|          | Reserved                      |             |        | 0x004  |  |  |  |  |
|          | Reserved                      |             |        | 0x008  |  |  |  |  |
|          | Reserved                      |             |        | 0x00C  |  |  |  |  |
| SPI_SCR  | System configuration register | 32          | R/W    | 0x010  |  |  |  |  |
| SPI_SSR  | System status register        | 32          | R      | 0x014  |  |  |  |  |
| SPI_ISR  | Interrupt status register     | 32          | R/W    | 0x018  |  |  |  |  |
| SPI_IER  | Interrupt enable register     | 32          | R/W    | 0x01C  |  |  |  |  |
|          | Reserved                      |             |        | 0x020  |  |  |  |  |
| SPI_SET1 | Set up 1 register             | 32          | R/W    | 0x024  |  |  |  |  |
| SPI_SET2 | Set up 2 register             | 32          | R/W    | 0x028  |  |  |  |  |
| SPI_CTRL | Control register              | 32          | R/W    | 0x02C  |  |  |  |  |
| SPI_DSR  | Data status register          | 32          | R      | 0x030  |  |  |  |  |
| SPI_TX   | Transmit register             | 32          | R/W    | 0x034  |  |  |  |  |
| SPI_RX   | Receive register              | 32          | R      | 0x038  |  |  |  |  |
| SPI_TEST | Test register                 | 32          | R/W    | 0x03C  |  |  |  |  |

# Table 2. SPI Registers

 Table 3.
 Identification Register Bit Description (SPI\_REV—0x000)

|      |          | Base Address = 0xFFFB 0C00, Offset = 0x00                                              |        |
|------|----------|----------------------------------------------------------------------------------------|--------|
| Bit  | Name     | Function                                                                               | Access |
| 31:8 | Reserved | A read access returns 0.                                                               | R      |
| 7:0  | REV      | Revision number                                                                        | R      |
|      |          | The 4-bit LSB indicates a minor revision.<br>The 4-bit MSB indicates a major revision. |        |
|      |          | Ex: $0x10 \rightarrow version 1.0$ .                                                   |        |

A write to this register has no effect.

A reset has no effect on the value returned.

| Table 4. | System Configuration Register Bit Description (SPI_SCR—0x010) |  |
|----------|---------------------------------------------------------------|--|
|----------|---------------------------------------------------------------|--|

|      | Base Address = 0xFFFB 0C00, Offset = 0x10 |                                                                                                                                                                                                                                                                                             |        |           |  |  |
|------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|--|--|
| Bit  | Name                                      | Function                                                                                                                                                                                                                                                                                    | Access | Reset     |  |  |
| 31:5 | Reserved                                  | A read access returns 0.                                                                                                                                                                                                                                                                    | R      | 0x0000000 |  |  |
| 4:3  | IDLEMODE                                  | Power management, req/ack control                                                                                                                                                                                                                                                           | R/W    | 00        |  |  |
|      |                                           | <ul> <li>00: Force-idle. An idle request is acknowledged unconditionally.</li> <li>01: No idle. An idle request is never acknowledged.</li> <li>10: Smart idle. An idle request is acknowledged based on the internal activity of the module.</li> <li>11: Reserved: Do not use.</li> </ul> |        |           |  |  |
| 2 6  | EN                                        | Wake-up feature control                                                                                                                                                                                                                                                                     | R/W    | 0         |  |  |
|      | AWAKEUP                                   | 0: Wake-up is disabled.<br>1: Wake-up capability is enabled.                                                                                                                                                                                                                                |        |           |  |  |
| 1    | SOFTRESET                                 | Software reset. Set this bit to 1 to trigger an SPI reset. This bit is automatically reset by hardware. Writing a 0 has no effect.                                                                                                                                                          | R/W    | 0         |  |  |
|      |                                           | During reads, it always returns 0.                                                                                                                                                                                                                                                          |        |           |  |  |
|      |                                           | 0: Normal mode.<br>1: The module is reset.                                                                                                                                                                                                                                                  |        |           |  |  |
| 0    | AUTOIDLE                                  | Internal OCP clock gating strategy                                                                                                                                                                                                                                                          | R/W    | 0         |  |  |
|      |                                           | 0: OCP clock is free-running.<br>1: Automatic OCP clock gating strategy is applied,<br>based on the OCP interface activity.                                                                                                                                                                 |        |           |  |  |

This register allows control of the OCP interface parameters.

# Table 5. System Status Register Bit Description (SPI\_SSR—0x014)

This register provides status information about the reset.

|      | Base Address = 0xFFFB 0C00, Offset = 0x14 |                                                                                          |        |            |  |  |
|------|-------------------------------------------|------------------------------------------------------------------------------------------|--------|------------|--|--|
| Bit  | Name                                      | Function                                                                                 | Access | Reset      |  |  |
| 31:1 | Reserved                                  | A read access returns 0.                                                                 | R      | 0x00000000 |  |  |
| 0    | RESETDONE                                 | Internal reset monitoring<br>0: Internal module reset is ongoing.<br>1: Reset completed. | R      | 0          |  |  |

**Note:** Before accessing or using the module the local host must ensure that internal reset is released by reading the system status register (SPI\_SSR).

SPRU760C

#### SPI Master/Slave

|      | Base Address = 0xFFFB 0C00, Offset = 0x18 |                                                     |        |           |  |  |
|------|-------------------------------------------|-----------------------------------------------------|--------|-----------|--|--|
| Bit  | Name                                      | Function                                            | Access | Reset     |  |  |
| 31:5 | Reserved                                  | A read access returns 0.                            | R      | 0x0000000 |  |  |
| 4    | WAKEUP                                    | Wake-up: Active high.                               | R/W    | 0         |  |  |
| 3    | TX_UNDERFLOW                              | Transmit underflow: Active high.                    | R/W    | 0         |  |  |
| 2    | RX_OVERFLOW                               | Receive overflow: Active high.                      | R/W    | 0         |  |  |
| 1    | WE                                        | Write end: Active high.<br>Serialization complete.  | R/W    | 0         |  |  |
| 0    | RE                                        | Read end: Active high.<br>Receive register updated. | R/W    | 0         |  |  |

# Table 6.Interrupt Status Register Bit Description (SPI\_ISR—0x018)

The interrupt status register is used to qualify the interrupt. Writing a 1 to the corresponding status bit releases the interrupt. Writing a 0 has no effect.

| Table 7. | Interrupt Enable | Register B | lit Description | (SPI_ | IER—0x01C) |
|----------|------------------|------------|-----------------|-------|------------|
|----------|------------------|------------|-----------------|-------|------------|

|      | Base Address = 0xFFFB 0C00, Offset = 0x1C |                                                |        |           |  |  |
|------|-------------------------------------------|------------------------------------------------|--------|-----------|--|--|
| Bit  | Name                                      | Function                                       | Access | Reset     |  |  |
| 31:5 | Reserved                                  | A read access returns 0.                       | R      | 0x0000000 |  |  |
| 4    | MSK4                                      | Enable interrupt when wake up                  | R/W    | 0         |  |  |
|      |                                           | 0: Interrupt disabled.<br>1: Interrupt active. |        |           |  |  |
| 3    | MSK3                                      | Enable interrupt when TX underflow             | R/W    | 0         |  |  |
|      |                                           | 0: Interrupt disabled.<br>1: Interrupt active. |        |           |  |  |
| 2    | MSK2                                      | Enable interrupt when RX overflow              | R/W    | 0         |  |  |
|      |                                           | 0: Interrupt disabled.<br>1: Interrupt active. |        |           |  |  |
| 1    | MSK1                                      | Enable interrupt for write cycle               | R/W    | 0         |  |  |
|      |                                           | 0: Interrupt disabled.<br>1: Interrupt active. |        |           |  |  |
| 0    | MSK0                                      | Enable interrupt for read cycle                | R/W    | 0         |  |  |
|      |                                           | 0: Interrupt disabled.<br>1: Interrupt active. |        |           |  |  |

|      | Base Address = 0xFFFB 0C00, Offset = 0x24 |                                                                                                            |        |           |  |  |
|------|-------------------------------------------|------------------------------------------------------------------------------------------------------------|--------|-----------|--|--|
| Bit  | Name                                      | Function                                                                                                   | Access | Reset     |  |  |
| 31:6 | Reserved                                  | A read access returns 0.                                                                                   | R      | 0x0000000 |  |  |
| 5    | DMA_EN                                    | Defines the protocol<br>0: MCU-DSP protocol.<br>1: DMA protocol.                                           | R/W    | 0         |  |  |
| 4:1  | PTV                                       | The prescale time value (2 <sup>PTV</sup> ) generates the shift register clock in master mode. (TSPCLKMX). | R/W    | 0000      |  |  |
|      |                                           | The following scale values are supported:<br>0000: 1<br>0001: 2<br>0010: 4<br>0011: 8<br>0100: 16          |        |           |  |  |

# Table 8. Set Up SPI 1 Register Bit Description (SPI\_SET1—0x024)

0101: 32 0110: 64 0111: 128 1000: 256 1001: 512 1010: 1024 1011: 2048 Others: 4096

Note: A write access to this register during a transaction does not affect the register and activates an OCP error.

SPI functional clock enable

0: Clock is shut off.1: Clock is running.

SPI\_SET1 is dedicated to the configuration of the serial port interface.

SPI\_SET2 is dedicated to the configuration of the serial port interface.

0

EN\_CLK

R/W

0

#### SPI Master/Slave

| Base Address = 0xFFFB 0C00, Offset = 0x28 |          |                                                                                                                                                                                                                          |        |        |  |
|-------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--|
| Bit                                       | Name     | Function                                                                                                                                                                                                                 | Access | Reset  |  |
| 31:16                                     | Reserved | A read access returns 0.                                                                                                                                                                                                 | R      | 0x0000 |  |
| 15                                        | MODE     | 0: Slave mode                                                                                                                                                                                                            | R/W    | 0      |  |
|                                           |          | 1: Master mode                                                                                                                                                                                                           |        |        |  |
| 14:10                                     | CP       | Clock phase                                                                                                                                                                                                              | R/W    | 00000  |  |
|                                           |          | The shift register clock begins toggling at:                                                                                                                                                                             |        |        |  |
|                                           |          | 0: The middle of the data transfer<br>1: The beginning of the data transfer                                                                                                                                              |        |        |  |
|                                           |          | Bit 10 qualifies the access on device 0.<br>Bit 11 qualifies the access on device 1.<br>Bit 12 qualifies the access on device 2.<br>Bit 13 qualifies the access on device 3.<br>Bit 14 qualifies the access on device 4. |        |        |  |
| 9:5                                       | CE       | Shift register enable                                                                                                                                                                                                    | R/W    | 00000  |  |
|                                           |          | Active level of the shift register enable                                                                                                                                                                                |        |        |  |
|                                           |          | 0: The active level is low.<br>1: The active level is high.                                                                                                                                                              |        |        |  |
|                                           |          | Bit 5 qualifies the access on device 0.<br>Bit 6 qualifies the access on device 1.<br>Bit 7 qualifies the access on device 2.<br>Bit 8 qualifies the access on device 3.<br>Bit 9 qualifies the access on device 4.      |        |        |  |
| 4:0                                       | CI       | Clock invert                                                                                                                                                                                                             | R/W    | 00000  |  |
|                                           |          | Inactive edge of the shift register clock                                                                                                                                                                                |        |        |  |
|                                           |          | <ul><li>0: The inactive state of the clock is low.</li><li>1: The inactive edge of the clock is high.</li></ul>                                                                                                          |        |        |  |
|                                           |          | Bit 0 qualifies the access on device 0.<br>Bit 1 qualifies the access on device 1.<br>Bit 2 qualifies the access on device 2.<br>Bit 3 qualifies the access on device 3.<br>Bit 4 qualifies the access on device 4.      |        |        |  |

# Table 9. Set Up SPI 2 Register Bit Description (SPI\_SET2—0x028)

Notes: 1) In slave mode, the end of a transaction is detected based on CE field configuration. If CEi = 0, the end of a transaction is detected on the rising edge of nSPEN0. If CEi = 1, the end of a transaction is detected on the falling edge of nSPEN0. For more information on the different configurations, see Section 14.1.4.4.

2) In slave mode, all Cli bits must have the same value. This value depends on the inactive edge of the master clock.

3) In slave mode, all CEi bits must have the same value. This value depends on the active level of the master enable.

4) In slave mode, all CPi bits must have the same value. This value depends on the master clock phase.

5) A write access to this register during a transaction does not affect the register and activates an OCP error. The delay between a write in the SET2 register and the CI/CE bits taking effect is 2 x ARMXOR\_CK cycles.

24 Serial Interfaces

| Bit   | Name     | Function                                                                                                                                  | Access | Reset    |
|-------|----------|-------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|
| 31:10 | Reserved | A read access returns 0.                                                                                                                  | R      | 0x000000 |
| 9:7   | AD       | Index of the addressed device                                                                                                             | R/W    | 000      |
|       |          | 000: Enable device 0<br>001: Enable device 1<br>010: Enable device 2<br>011: Enable device 3<br>100: Enable device 4<br>Others: Undefined |        |          |
| 6:2   | NB       | Number of bits to receive/transmit<br>00000: 1 bit receive/transmit<br>11111: 32 bits receive/transmit                                    | R/W    | 00000    |
| 1     | WR       | Write process activation- active high                                                                                                     | R/W    | 0        |
| 0     | RD       | Read and write process activation- active high                                                                                            | R/W    | 0        |

### Table 10. Control SPI Register Bit Description (SPI\_CTRL—0x02C)

Note: A write access to this register during a transaction does not affect the register and activates an OCP error.

This register is dedicated to the activation of the serial port interface. It defines:

- Read activation of the serial port
- U Write activation of the serial port
- □ Number of bits to transfer (in the range 1 to 32)
- External device address (up to 5)

| Table 11. | Shift Status I | Register l | Bit Description | (SPI_ | _DSR— | -0x030) |
|-----------|----------------|------------|-----------------|-------|-------|---------|
|-----------|----------------|------------|-----------------|-------|-------|---------|

| Base Address = 0xFFFB 0C00, Offset = 0x30 |          |                                                                                                                                                       |        |           |  |  |
|-------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|--|--|
| Bit                                       | Name     | Function                                                                                                                                              | Access | Reset     |  |  |
| 31:2                                      | Reserved | A read access returns 0.                                                                                                                              | R      | 0x0000000 |  |  |
| 1                                         | TX_EMPTY | Shift register is empty: Active high                                                                                                                  | R      | 1         |  |  |
|                                           |          | This bit is cleared when the transmit register (SPI_TX) has been written (in functional or emulation mode).                                           |        |           |  |  |
| 0                                         | RX_FULL  | Receive register is full: Active high<br>This bit is cleared when the receive register<br>(SPI_RX) has been read (not cleared from<br>debugger read). | R      | 0         |  |  |

#### The data to transmit are loaded to the SPI\_TX register.

| Table 12. | Transmit Register | Bit Description | (SPI_1 | [X—0x034] | ) |
|-----------|-------------------|-----------------|--------|-----------|---|
|           |                   |                 |        |           |   |

| Base Address = 0xFFFB 0C00, Offset = 0x34 |                   |                                                              |        |            |  |
|-------------------------------------------|-------------------|--------------------------------------------------------------|--------|------------|--|
| Bit                                       | Name              | Function                                                     | Access | Reset      |  |
| 31:0                                      | SPI_TX            | Data to transmit                                             | R/W    | 0x00000000 |  |
| Notes: 1                                  | ) The bits to tra | insmit have to be aligned on the LSB of the SPI_TX register. |        |            |  |

1) The bits to transmit have to be aligned on the LSB of the SPI\_TX register.

2) If the number of bits to transmit is 8, SPI\_TX [7] is transmitted first, then SPI\_TX [6], and so on.

3) If the number of bits to transmit is 32, SPI\_TX [31] is transmitted first, then SPI\_TX [30], and so on.

#### Figure 2. Transmission Example



- Note: The number of bits of the word to be transmitted is programmed through NB bit field in the SPI\_CTRL register. The transmit register (SPI\_TX) data loading must be completed according to the transmitted word bit length and in the proper sequence register access. SPI\_TX register is considered as updated (transmit register full with new data) when the mostsignificant byte part of the transmitted word has been written. If the number of bits of the transmitted word is not aligned on a byte boundary, the value of the unused bits is considered as don't care.
  - $\bigcirc$  0  $\leq$  NB  $\leq$  7: MSB = SPI\_TX[7:0]
  - B ≤ NB ≤ 15: MSB = SPI\_TX[15:8]
  - 16 ≤ NB ≤ 23: MSB = SPI\_TX[23:16]
  - $\square$  24  $\leq$  NB  $\leq$  31: MSB = SPI\_TX[31:24]

The SPI\_TX register is a 32-bit wide register that is 16-bit, or 32-bit addressable. Partial register update with successive 16-bit accesses can be used to load the transmit register. In that case, the LSB must be updated before the MSB part of the transmitted word.

The received data are accessible on the OCP bus through SPI RX register.

| Base Address = 0xFFFB 0C00, Offset = 0x38 |        |              |        |            |  |
|-------------------------------------------|--------|--------------|--------|------------|--|
| Bit                                       | Name   | Function     | Access | Reset      |  |
| 31:0                                      | SPI_RX | Receive data | R      | 0x00000000 |  |
|                                           |        |              |        |            |  |

#### Table 13. Receive Register Bit Description (SPI\_RX—0x038)

**Note:** The number of bits of the word to be received is programmed through the NB bit field in SPI\_CTRL register. Receive register (SPI\_RX) data read must be completed according to the received word bit length and in the proper sequence register access.

The SPI\_RX register is considered to be empty if the most-significant byte part of the received word has been read (in functional mode only and not in emulation mode). If the number of bits of the received word is not aligned on a byte boundary, the unused bits are read as undefined value.

The SPI\_RX register is a 32-bit register that is 16-bit, or 32-bit addressable. Partial register reads with successive 16-bit accesses can be used to read the receive register. In this case, the LSB must be read before the MSB part of the received word.

| Table 14. | Test Register | Bit Description | (SPI TEST- | -0x03C) |
|-----------|---------------|-----------------|------------|---------|
|           |               |                 |            | /       |

| Base Address = 0xFFFB 0C00, Offset = 0x3C |                                |                                                     |     |          |  |  |  |  |
|-------------------------------------------|--------------------------------|-----------------------------------------------------|-----|----------|--|--|--|--|
| Bit                                       | Bit Name Function Access Reset |                                                     |     |          |  |  |  |  |
| 31:11                                     | Reserved                       | A read access returns 0.                            | R   | 0x000000 |  |  |  |  |
| 10:6                                      | RTSPEN                         | Read value of TSPEN                                 | R   | 0        |  |  |  |  |
| 5                                         | RCV                            | Read clock value                                    | R   | 0        |  |  |  |  |
| 4                                         | WCV                            | Write clock value                                   | R/W | 0        |  |  |  |  |
| 3                                         | RTV                            | Read test value (spy TSPDI)                         | R   | 0        |  |  |  |  |
| 2                                         | WTV                            | Write test value (force TSPDO)                      | R/W | 0        |  |  |  |  |
| 1                                         | FDO                            | Force TSPDO to read value from WTV bit: Active high | R/W | 0        |  |  |  |  |
| 0                                         | TMODE                          | Test mode enable: Active high                       | R/W | 0        |  |  |  |  |

When the test mode is selected by setting the TMODE configuration bit in the SPI\_TEST register, it enables the following features:

**TSPDO** is fed back to TSPDI.

Lt is possible to control and monitor the TSPDO, TSPDI, and CLK\_S pins.

When the test mode is not active, a read to the SPI\_TEST register always returns 0.

- FDO: This control bit enables forcing TSPDO to read the value of the WTV bit, allowing control of TSPDO.
- WTV: This bit enables the forcing the TSPDO value (test purposes).
- RTV: This bit is directly connected to TSPDI. It assumes that the input signal is static.
- WCV: This bit enables forcing the CLK output (in master mode only) to provide control of the CLK output.
- RCV: This bit is directly connected to CLK input. It enables testing connectivity of CLK\_S in feedback mode only.
- RTSPEN: These bits are directly connected to TSPEN outputs when the test mode is enabled.

# 1.4 **Protocol Description**

The serial port interface must be configured via the setup registers.

A read process is always simultaneous with a write process, because the internal shift register is based on a loop (FIFO principle). However, the concurrent write process can be a dummy write if there is no data to transmit.

Depending on the mode selection (master or slave mode), the shift register clock can be derived internally from the CLK\_M, or it can come directly from the CLK\_S input.

The external transfer of a packet starts as soon as one of the transmit clocks is generated.

The received/transmitted data packet is shifted in/shifted out on the rising or falling edge of the shift register clock (SRCLK).

The loading of the packet is then validated on the deactivation of the enable signal (rising or falling edge).

SPI\_ISR is updated at the end of a transaction in MCU-DSP and DMA modes (master or slave), and an interrupt request can be generated depending on SPI\_IER bits.

Sections 1.4.1 to 1.4.3 present the steps describing the MCU-DSP and DMA protocols. These steps must be followed in order to have a correct behavior.

In MCU-DSP protocol, the interrupt request must not be masked. Thus, the SPI can issue an interrupt to inform the host that the transaction is finished.

# 1.4.1 MCU-DSP Protocol

The host is either the MCU or the DSP.

# MCU-DSP Transmit Protocol in Master Mode

The protocol has several steps:

- **Step 1:** MCU-DSP writes to the setup registers (SPI\_SET1 and SPI\_SET2).
- **Step 2:** MCU-DSP writes to the transmit register (SPI\_TX).
- Step 3: MCU-DSP writes to the control register (SPI\_CTRL).

Once the WR bit is set:

- The transmit register (SPI\_TX) is copied into the shift register (SPI\_SR).
- $\Box$  The device enable goes low (nTSPENi), if CEi = 0 in SPI\_SET2.
- The shift register clock is activated (SRCLK) and the transmission starts.

One SRCLK cycle later, the WR bit is reset.

- Step 4: When the transmission is completed:
  - $\Box$  The device enable (nTSPENi) goes high if CEi = 0 in SPI\_SET2.
  - The WE bit is set in the interrupt status register (SPI\_ISR).
  - An interrupt is generated, if MSK1 is set in the interrupt enable register (SPI\_IER).
- **Step 5:** Once the MCU-DSP clears the WE status bit (SPI\_ISR), the interrupt request is released.



# Figure 3. MCU-DSP Transmit Protocol in Master Mode With Cli = 0, CEi = 0and CPi = 0

### MCU-DSP Receive/Transmit Protocol in Master Mode

The protocol has several steps:

- Step 1: MCU-DSP writes to the setup registers (SPI\_SET1 and SPI\_SET2).
- **Step 2:** MCU-DSP writes to the transmit register (SPI\_TX) (optional). This is necessary only when you want to perform a transmission at the same time.
- **Step 3:** MCU-DSP writes to the control register (SPI\_CTRL).

Once the RD bit is set:

- The transmit register is copied into the shift register (SPI\_SR).
- □ The device enable goes low (nTSPEN[i]), if CEi = 0 in SPI\_SET2.
- The shift register clock is activated (SRCLK) and the transmission and reception start.
- One SRCLK cycle later, the RD bit is reset.

The WR bit has no effect on behavior. This bit is reset like RD, if it has been set.

When the reception is completed:

- The device enable goes high (nTSPEN[i]), if CEi = 0 in SPI\_SET2.
- The RE bit is set in the interrupt status register (SPI\_ISR).
- The shift register (SPI\_SR) is copied into the receive register (SPI\_RX).
- An interrupt is generated if MSK0 is set in the interrupt enable register (SPI\_IER).
- **Step 4:** Once the MCU-DSP has read the receive register (SPI\_RX) and has cleared the RE status bit (SPI\_ISR), the interrupt request is released.



Figure 4. MCU-DSP Receive Transmit Protocol in Master Mode With Cli = 0, CEi = 0, and CPi = 0

#### MCU-DSP Transmit Protocol in Slave Mode

The protocol has several steps:

- Step 1: MCU-DSP writes to the setup registers (SPI\_SET1 and SPI\_SET2).
- **Step 2:** MCU-DSP writes to the transmit register (SPI\_TX).
- **Step 3:** MCU-DSP writes to the control register (SPI\_CTRL).

Once the WR bit is set, the transmit register (SPI\_TX) is copied into the shift register (SPI\_SR).

If CEi = 0 in SPI\_SET2, the transmission starts as soon as the slave device enable goes low (nSPEN0) and the shift register clock is activated (SRCLK).

One SRCLK cycle later, the WR bit is reset.

- Step 4: When the transmission is completed:
  - $\Box$  The device enable goes high (nSPEN0) if CEi = 0 in SPI\_SET2.
  - The WE bit is set in the interrupt status register (SPI\_ISR).
  - An interrupt is generated if MSK1 is set in the interrupt enable register (SPI\_IER).
- **Step 5:** Once the MCU-DSP clears the WE status bit (SPI\_ISR), the interrupt request is released.



# Figure 5. MCU-DSP Transmit Protocol in Slave Mode With Cli = 0, CEi = 0 and CPi = 0

### MCU-DSP Receive/Transmit Protocol in Slave Mode

The protocol is made up of several steps:

- Step 1: MCU-DSP writes to the setup registers (SPI\_SET1 and SPI\_SET2).
- Step 2: MCU-DSP writes to the transmit register (SPI\_TX) (optional).

This is necessary only when you want to perform a transmission at the same time.

Step 3: MCU-DSP writes to the control register (SPI\_CTRL).

Once the RD bit is set, the transmit register (SPI\_TX) is copied into the shift register (SPI\_SR).

If CEi = 0 in SPI\_SET2, the transmission and reception start as soon as the slave device enable goes low (nSPEN0) and the shift register clock is activated (SRCLK).

One cycle later, the RD bit is reset.

The WR bit has no effect on the behavior. This bit is reset like RD, if it has been set.

- **Step 4:** When the reception is completed:
  - $\Box$  The device enable goes high (nSPEN0) if CEi = 0 in SPI\_SET2.
  - RE status bit is set in the interrupt status register (SPI\_ISR).
  - The shift register (SPI\_SR) is copied into the receive register (SPI\_RX).
  - An interrupt is generated if MSK0 is set in the interrupt enable register (SPI\_IER).
- **Step 5:** Once the MCU-DSP has read the receive register (SPI\_RX) and has cleared the RE status bit (SPI\_ISR), the interrupt request is released.



Figure 6. MCU-DSP RX/TX Protocol in Slave Mode With Cli = 0, CEi = 0 and CPi = 0
### 1.4.2 DMA Protocol

The interrupt (nIRQ) waveform is the same as the one in MCU-DSP protocol.

#### DMA Transmit Protocol in Master Mode

The protocol has several steps:

**Step 1:** MCU-DSP writes to the setup and control registers (SPI\_SET1, SPI\_SET2, and SPI\_CTRL).

When DMA\_EN is set, a transmit DMA request is generated, once the WR bit is set.

- **Step 2:** The DMA writes the data to the transmit register (SPI\_TX). Once the data is written:
  - ☐ The transmit DMA request is cleared.
  - The TX\_EMPTY status bit is reset in the data status register (SPI\_DSR).
  - The transmit register (SPI\_TX) is copied into the shift register (SPI\_SR).
  - $\Box$  The device enable goes low (nTSPENi), if CEi = 0 in SPI\_SET2.
  - ☐ The shift register clock is activated (SRCLK) and the transmission starts.
- **Step 3:** When the transmission is completed:
  - $\Box$  The device enable goes high (nTSPENi) if CEi = 0 in SPI\_SET2.
  - TX\_EMPTY is set in the data status register (SPI\_DSR).
  - A transmit DMA request is generated.

To stop the process, the MCU-DSP must reset the WR bit in the control register (SPI\_CTRL).



## Figure 7. DMA TX Protocol in Master Mode With Cli = 0, CEi = 0 and CPi = 0

### DMA Receive Protocol in Master Mode

The protocol has several steps:

- Step 1: MCU-DSP writes to the setup registers (SPI\_SET1 and SPI\_SET2).
- Step 2: MCU-DSP writes to the control register (SPI\_CTRL). Once the RD bit is set:
  - □ The device enable goes low (nTSPENi) if CEi = 0 in SPI\_SET2.
  - The shift register clock is activated (SRCLK) and the reception starts.
- Step 3: When the reception is completed:
  - The device enable goes high (nTSPENi) if CEi = 0 in SPI\_SET2.
  - The RX\_FULL status bit is set in the data status register (SPI\_DSR).
  - The shift register (SPI\_SR) is copied into the receive register (SPI\_RX).
  - A receive DMA request is generated.
- **Step 4:** Once the DMA reads the receive register (SPI\_RX):
  - $\Box$  The device enable goes low (nTSPENi) if CEi = 0 in SPI\_SET2.
  - The RX\_FULL status bit is reset in the data status register (SPI\_DSR).
  - ☐ The receive DMA request is released.
  - $\Box$  Another reception starts (Step3  $\rightarrow$  Step4  $\rightarrow$  Step3  $\rightarrow$  Step4...).

To stop the process, the MCU-DSP must reset the RD bit in the control register (SPI\_CTRL).



The software resets the interrupt status register by writing a 1 at the corresponding bit position [n] (or [m]) after the interrupt is served.

### DMA Transmit and Receive Protocol in Master Mode

The protocol has several steps:

**Step 1:** MCU-DSP writes to the setup and control registers (SPI\_SET1, SPI\_SET2, and SPI\_CTRL).

When DMA\_EN is set, a transmit DMA request is generated, once the RD and WR bits are set.

- **Step 2:** The DMA writes the data in the transmit register (SPI\_TX). Once the data is written:
  - The transmit DMA request is released.
  - TX\_EMPTY is reset in the data status register (SPI\_DSR).
  - The transmit register (SPI\_TX) is copied into the shift register (SPI\_SR).
  - $\Box$  The device enable goes low (nTSPENi), if CEi = 0 in SPI\_SET2.
  - The shift register clock (SRCLK) is activated and the transmission and reception start.
- Step 3: When the transmission and the reception are completed:
  - □ The device enable goes high (nTSPENi), if CEi = 0 in SPI\_SET2.
  - The shift register (SPI\_SR) is copied into the receive register (SPI\_RX).
  - RX\_FULL and TX\_EMPTY are set in the data status register (SPI\_DSR).
  - A receive DMA request is generated.
- **Step 4:** Once the DMA reads the receive register (SPI\_RX):
  - The RX\_FULL status bit is reset in the data status register (SPI\_DSR).
  - □ The receive DMA request is released.
  - A transmit DMA request is generated.
  - □ Another transmission and reception can start (Step 2 → Step 3 → Step 4 → Step 2 → Step 3 → Step 4 →...).

To stop the process, the MCU-DSP has to reset the RD and WR bits in the control register (SPI\_CTRL).



## Figure 9. DMA Transmit and Receive Protocol in Master Mode With Cli = 0, CEi = 0

42 Serial Interfaces

### DMA Transmit Protocol in Slave Mode

The protocol has several steps:

**Step 1:** MCU-DSP writes to the setup and control registers (SPI\_SET1, SPI\_SET2, and SPI\_CTRL).

When DMA\_EN is set, a transmit DMA request is generated, once the WR bit is set.

- **Step 2:** The DMA writes the data in the transmit register (SPI\_TX). Once the data is written:
  - The transmit DMA request is cleared (TX\_NDMA\_REQ goes high).
  - TX\_EMPTY is reset in the data status register (SPI\_DSR).
  - The transmit register (SPI\_TX) is copied into the shift register (SPI\_SR).
  - If CEi = 0 in SPI\_SET2, the transmission starts as soon as the slave device enable goes low (nSPEN0) and the shift register clock is activated (SRCLK).
- Step 3: When the transmission is completed:
  - TX\_EMPTY is set in the data status register (SPI\_DSR).
  - A transmit DMA request is generated.
  - $\hfill\square$  Another transmission can start (Step2  $\rightarrow$  Step3  $\rightarrow$  Step2  $\rightarrow$  Step3...).

To stop the process, the MCU-DSP has to reset the WR bit in the control register (SPI\_CTRL).



The software resets the interrupt status register by writing a 1 at the corresponding bit position [n] (or [m]) after the interrupt is served.

### DMA Receive Protocol in Slave Mode

The protocol has several steps:

- Step 1: MCU-DSP writes to the setup and control registers (SPI\_SET1, SPI\_SET2, and SPI\_CTRL).
  - If CEi = 0 in SPI\_SET2 and the RD bit is set, the reception starts as soon as the slave device enable goes low (nSPEN0) and the shift register clock is activated (SRCLK).
- Step 2: When the reception is completed:
  - $\Box$  The device enable goes high (nSPEN0), if CEi = 0 in SPI\_SET2.
  - □ The RX\_FULL bit is set in the data status register (SPI\_DSR).
  - The shift register (SPI\_SR) is copied into the receive register (SPI\_RX).
  - A receive DMA request is generated.
- **Step 3:** Once the DMA reads the receive register (SPI\_RX):
  - The RX\_FULL status bit is reset in the data status register (SPI\_DSR).
  - The receive DMA request is released.
  - Another reception can start.

To stop the process, the MCU-DSP must reset the RD bit in the control register (SPI\_CTRL).



## Figure 11. DMA Receive Protocol in Slave Mode With Cli = 0, CEi = 0 and CPi = 0

### DMA Transmit and Receive Protocol in Slave Mode

The protocol has several steps:

**Step 1:** MCU-DSP writes to the setup and control registers (SPI\_SET1, SPI\_SET2, and SPI\_CTRL).

When the DMA\_EN and WR bits are set, a transmit DMA request is generated.

- **Step 2:** The DMA writes the data in the transmit register (SPI\_TX). Once the data is written:
  - The transmit DMA request is released.
  - The TX\_EMPTY status bit is reset in the data status register (SPI\_DSR).
  - The transmit register (SPI\_TX) is copied into the shift register (SPI\_SR).

If CEi = 0 in SPI\_SET2, the transmission and reception start as soon as the slave device enable goes low (nSPEN0) and the shift register clock is activated (SRCLK).

- **Step 3:** When the transmission and the reception are completed:
  - The shift register (SPI\_SR) is copied into the receive register (SPI\_RX).
  - The RX\_FULL and TX\_EMPTY bits are set in the data status register (SPI\_DSR).
  - A receive DMA request is generated.
- **Step 4:** Once the DMA reads the receive register (SPI\_RX):
  - The RX\_FULL status bit is reset in the data status register (SPI\_DSR).
  - The receive DMA request is released.
  - A transmit DMA request is generated.
  - Another transmission and reception can start.

To stop the process, the MCU-DSP must reset the RD and WR bits in the control register (SPI\_CTRL).



## Figure 12. DMA Transmit and Receive Protocol in Slave Mode With Cli = 0, CEi = 0and CPi = 0

## 1.4.3 Overflow/Underflow Interrupts

In slave mode, whether the functional mode is MCU DSP or DMA, the possibility exists that the receive register (SPI\_RX) is overflowing or/and the transmit register (SPI\_TX) is underflowing. In either case, an interrupt is generated and sent to the host. It is up to the host to take the right action, according to the received interrupt.

### **Overflow Interrupt Generation**

To generate an overflow interrupt, the SPI must be in the following state:

- $\Box$  SPI is configured in slave mode (SPI\_SET2 [15] = 0).
- $\Box$  Enable for overflow interrupt is active (SPI\_IER [2] = 1).
- The receive register (SPI\_RX) has not been read between two receptions.

To release the interrupt (nIRQ) activated by the RX overflow bit (SPI\_ISR [2]), the user has to clear the RX overflow status bit by writing a 1 in SPI\_ISR [2].



## Figure 13. Example of an Overflow Generation With Cli = 0, CEi = 0 and CPi = 0

## **Underflow Interrupt Generation**

To generate an underflow interrupt, the SPI has to be in the following state:

- $\Box$  SPI is configured in slave mode (SPI\_SET2 [15] = 0).
- $\Box$  Enable for underflow interrupt is active (SPI\_IER [3] = 1).
- □ The transmit register (SPI\_TX) has not been updated between two transmissions.

To release the interrupt (nIRQ) activated by the TX underflow bit (SPI\_ISR [3]), the user has to clear the Tx\_underflow status bit by writing a 1 to SPI\_ISR [3].

50 Serial Interfaces



## Figure 14. Example of an Underflow Generation With Cli = 0, CEi = 0 and CPi = 0

SPRU760C

Serial Interfaces 51

## 1.4.4 Transmission Modes

The serial interface is active as soon as the shift register clock is activated.

 $n\mbox{SPEN0}$  behaves the same as  $n\mbox{TSPENi},$  as shown in Figure 15 and Figure 16.

The transmitted data packet is shifted out on the rising or falling edge of SRCLK, whereas the received data packet is captured on the falling or rising edge of SRCLK (complementary edge).

When CPi = 0, the first edge (rising or falling) of SRCLK is used to capture the data and the second edge (falling or rising) is used to shift the data.

Figure 15. Example of a Transmission With CPi = 0



When CPi = 1, the first edge (rising or falling) of SRCLK is used to shift the data and the second edge (falling or rising) is used to capture the data.



### 1.5 Idle and Wake-Up Feature

When the host processor issues an idle request, the SPI goes into idle mode (in this mode, no clock is provided to the SPI), according to the IDLEMODE field of the system configuration register SPI\_SCR as described in Table 4.

If the IDLEMODE field is set to no-idle, the SPI does not go to idle mode.

If the IDLEMODE field is set to force-idle, the SPI goes into idle mode and acknowledges the request unconditionally. In this mode, SPI does not execute any transaction.

If the IDLEMODE field is set to smart-idle, the SPI module evaluates its internal capability to have the functional and interface clocks switched off. Once there is no more internal activity, the request signal is acknowledged and the SPI enters the sleep mode.

In this mode, the module issues a wake-up request when the following conditions are met:

 $\Box$  SPI is configured in slave mode (SPI\_SET2 [15] = 0).

□ The slave device enable (nSPEN0) becomes inactive after a transaction.

SPRU760C

Serial Interfaces 53

The ENAWAKEUP bit of the system configuration register (SPI\_SCR) controls this wake-up request.

When the system wakes up, the following actions are executed:

- ☐ The idle request goes low (inactive).
- The wake-up request is deasserted (in smart-idle mode only).
- The WAKEUP status bit is set in the interrupt status register (SPI\_ISR).
- The idle acknowledge goes low (inactive).
- An interrupt is generated if MSK4 is set in the interrupt enable register (SPI\_IER).

Once the SPI acknowledges the idle request, the functional and interface clocks can be stopped one cycle later.

Some restrictions apply on the module functionality when a wake-up request is generated (in Smart-Idle mode only). The following conditions must be met to ensure the right behavior of the requested transaction:

- The SPI must be in DMA mode: DMA\_EN set in the set up register (SPI\_SET1 [5] = 1).
- □ The requested transaction that wakes up the module must be a receive: RD set and WR reset in the control register (SPI\_CTRL [1:0] = 01).
- The functional clock (CLK\_M) must be active if the bit ENAWAKEUP (SPI\_SCR [2]) is set, in order to generate a wake-up request and to copy the received data into the SPI\_RX register. If the bit ENAWAKEUP is reset, SPI does not work when receiving a read transaction.

The AUTOIDLE bit of the system configuration register (SPI\_SCR [0]) can be set in order to save power. This bit controls the internal OCP clock activity:

- U When this bit is cleared, the internal OCP clock is free-running.
- When this bit is set, the internal OCP clock becomes inactive if the OCP command is in IDLE state.

## 1.6 Emulation Mode

In emulation mode, SPI has a slightly different functionality: a read of SPI\_RX does not clear the bit RX\_FULL (SPI\_DSR [0]). Thus, SPI\_RX is still considered as not read for SPI.

Otherwise, SPI behavior in emulation mode is the same as in functional mode.

A read of the bits EMUSOFT and EMUFREE (SPI\_SCR [6:5]) always gives 01. A write has no effect on these bits.

## 1.7 Reset

Before accessing or using the module, the local host must ensure that internal reset is released by reading the system status register (SPI\_SSR).

## 2 I<sup>2</sup>C Multimaster Peripheral

## 2.1 Overview

The multimaster I<sup>2</sup>C peripheral provides an interface between a local host (LH) such as an MPU, MIPS, or DSP processor and any I<sup>2</sup>C-bus-compatible device that connects via the I<sup>2</sup>C serial bus. External components attached to the I<sup>2</sup>C bus can serially transmit/receive up to 8-bit data to/from the LH device through the two-wire I<sup>2</sup>C interface.

This I<sup>2</sup>C peripheral supports any slave or master I<sup>2</sup>C-compatible device. Figure 17 shows the example of a system with multiple I<sup>2</sup>C compatible devices in which the I<sup>2</sup>C serial ports are connected together for a two-way transfer from one device to other devices.





## 2.2 Functional Overview

The I<sup>2</sup>C bus is a multimaster bus. The I<sup>2</sup>C controller supports the multimaster mode that allows more than one device capable of controlling the bus to be connected to it. Each I<sup>2</sup>C device, including the DSP, is recognized by a unique address and can operate as either transmitter or receiver, according to the function of the device. In addition to being a transmitter or receiver, a device connected to the I<sup>2</sup>C bus can also be considered as master or slave when performing data transfers. A master device is a device that initiates a data transfer on the bus and generates the clock signals to permit that transfer. During this transfer, any device addressed by this master is considered a slave.

# 2.3 I<sup>2</sup>C Controller Features

The main features of the I<sup>2</sup>C controller are:

- Compliance with Philips I<sup>2</sup>C specification version 2.1, January 2000
- □ Standard mode (up to 100K bits/s) and fast mode (up to 400K bits/s) support
- 7-bit and 10-bit device addressing modes
- General call
- □ Start/restart/stop
- Multimaster transmitter/slave receiver mode
- Multimaster receiver/slave transmitter mode
- Combined master transmit/receive and receive/transmit mode
- Built-in FIFO for buffered read or write
- Module enable/disable capability
- Programmable clock generation
- □ 16-bit wide access to maximize bus throughput
- Low-power design
- Two DMA channels
- U Wide-interrupt capability

The current I<sup>2</sup>C does not support:

- High-speed (HS) mode for transfer up to 3.4M bits/s
- C-bus-compatibility mode

# 2.4 I<sup>2</sup>C Master/Slave Controller Signal Pads

Data are communicated to devices interfacing with the  $I^2C$  via the serial data line (SDA) and the serial clock line (SCL). These two wires carry information between the DSP or MPU device and other devices connected to the  $I^2C$  bus. The  $I^2C$  is a shared peripheral that can be allocated to the MCU or the DSP. Both the SDA and SCL are bidirectional pins. They must be connected to a positive supply voltage via a pullup resistor. When the bus is free, both pins are high. The driver of these two pins has an open drain to perform the required wired-AND function.

SPRU760C

| Table | 15. | Signal   | Pads |
|-------|-----|----------|------|
| 10010 |     | orginar. |      |

| Name    | Туре           | Reset<br>Value | Description                                                                                              |
|---------|----------------|----------------|----------------------------------------------------------------------------------------------------------|
| I2C_SCL | In/<br>Out(OD) | Input          | I <sup>2</sup> C serial CLK line.<br>Open-drain output buffer. Requires external pull-up resistor (Rp).  |
| I2C_SDA | In/<br>Out(OD) | Input          | I <sup>2</sup> C serial data line.<br>Open-drain output buffer. Requires external pull-up resistor (Rp). |

## 2.5 Operational Details

## 2.5.1 I<sup>2</sup>C Reset

The I<sup>2</sup>C module can be reset in the following three ways:

- A system bus reset (RESET\_ = 0). A device reset causes the system bus reset.
- □ A software reset by setting the SRST bit in the I2C\_SYSC register. This bit has the same action on the module logic as the system bus reset.
- The I2C\_EN bit in the I2C\_CON register can also reset a part of the I<sup>2</sup>C module. When the system bus reset is released (RESET\_ = 1), I2C\_EN = 0 keeps the functional part of the I<sup>2</sup>C module in reset state and all configuration registers can be accessed.

Table 16. Reset State of I<sup>2</sup>C Signals

| Pin | I/O/Z | System Reset   | I <sup>2</sup> C Reset (I2C_EN = 0) |
|-----|-------|----------------|-------------------------------------|
| SDA | I/O/Z | High impedance | High impedance                      |
| SCL | I/O/Z | High impedance | High impedance                      |

## 2.5.2 I<sup>2</sup>C Bit Transfer

The master device generates one clock pulse for each data bit transferred. Because of the variety of technology devices (CMOS, NMOS, bipolar) that can be connected to the I<sup>2</sup>C bus, the levels of logical 0 (low) and 1 (high) are not fixed and depend on the associated level of VDD. See Table 17 for electrical specifications.

|      | Parameter                 | Stan<br>D | dard Mode<br>evices | Fa<br>D | Unit       |   |
|------|---------------------------|-----------|---------------------|---------|------------|---|
|      |                           | Min       | Мах                 | Min     | Max        |   |
| VIL  | Low-level input voltage:  |           |                     |         |            |   |
|      | Fixed input levels        | -0.5      | 1.5                 | n/a     | n/a        | V |
|      | VDD-related input levels  | -0.5      | 0.3VDD              | -0.5    | 0.3VDD     |   |
| VIH  | High-level input voltage: |           |                     |         |            |   |
|      | Fixed input levels        | 3.0       | VDDmax+0.5          | n/a     | n/a        | V |
|      | VDD-related input levels  | 0.7VDD    | VDDmax+0.5          | 0.7VDD  | VDDmax+0.5 |   |
|      | Low-level output voltage: |           |                     |         |            |   |
|      | VDD>2V                    |           |                     |         |            |   |
| VOL1 | At 3mA sink current       | 0         | 0.4                 | 0       | 0.4        | V |
| VOL2 | At 6mA sink current       | n/a       | n/a                 | 0       | 0.6        |   |
|      | VDD<2V                    |           |                     |         |            |   |
| VOL3 | At 3mA sink current       | n/a       | n/a                 | 0       | 0.2VDD     |   |

## Table 17. Electrical Specification of the Input/Output

## 2.5.3 Data Validity

The data on the SDA line must be stable during the high period of the clock. The high and low states of the data line can change only when the clock signal on the SCL line is low.

Figure 18. Bit Transfer on the I<sup>2</sup>C Bus



#### 2.5.4 START and STOP Conditions

The I<sup>2</sup>C module generates start and stop conditions when it is configured as a master:

- START condition is a high-to-low transition on the SDA line while SCL is high.
- STOP condition is a low-to-high transition on the SDA line while SCL is high.

The bus is considered to be busy after the START condition (BB = 1) and free after the STOP condition (BB = 0).





# 2.6 I<sup>2</sup>C Operation

#### Serial Data Formats

The I<sup>2</sup>C controller operates in 16-bit word data format (byte write access supported for the last access). Each byte put on the SDA line is 8 bits long. The number of bytes that can be transmitted or received is unrestricted. The data are transferred with the most-significant bit (MSB) first. Each byte is followed by an acknowledge bit from the I<sup>2</sup>C module, if it is in receiver mode. The I<sup>2</sup>C controller supports endianism.



The I<sup>2</sup>C module supports two data formats, as shown in Figure 21:

- 7-bit/10-bit addressing format
- 7-bit/10-bit addressing format with repeated start condition

The first byte after a start condition (S) always consists of 8 bits. In the acknowledge mode, an extra bit dedicated for acknowledgement is inserted after each byte.

In the addressing formats with 7-bit addresses, the first byte is composed of 7 MSB slave-address bits and 1 LSB R/W\_ bit. In the addressing formats with 10-bit addresses, the first byte has 7 MSB slave address bits, such as 11110XX where XX is the two MSB of the 10-bit addresses and 1 LSB R/W\_ bit, which is 0 in this case.

The least-significant  $R/W_{-}$  of the address byte indicates the direction of the transmission of the following data bytes. If  $R/W_{-}$  is 0, the master writes data into the selected slave; if it is 1, the master reads data out of the slave.



Figure 21. I<sup>2</sup>C Data Transfer Formats

(c) Addressing Format With Repeated Start Condition

### Master Transmitter

In this mode, data assembled in one of the previously described data formats is shifted out on the serial data line SDA in synch with the self-generated clock pulses on the serial clock line SCL. The clock pulses are inhibited and SCL is held low when the intervention of the processor is required (XUDF) after a byte has been transmitted.

## Master Receiver

This mode can be entered only from the master transmitter mode. With any of the address formats (Figure 21 (a), (b), and (c)), the master receiver is entered after the slave address byte and bit R/W\_ have been transmitted, if R/W\_ is high. Serial data bits received on bus line SDA are shifted in synch with the self-generated clock pulses on SCL. The clock pulses are inhibited and SCL held low when the intervention of the processor is required (ROVR) after a byte has been transmitted. At the end of a transfer, it generates the stop condition.

### Slave Transmitter

This mode can be entered only from the slave receiver mode. With any of the address formats (Figure 21 (a), (b), and (c)), the slave transmitter is entered if the slave address byte is the same as its own address and bit R/W\_ has been transmitted, if R/W\_ is high. The slave transmitter shifts the serial data out on the data line SDA in synch with the clock pulses that are generated by the master device. It does not generate the clock, but it can hold clock line SCL low while the local host is required to intervene (XUDF).

### Slave Receiver

In this mode, serial data bits received on the bus line SDA are shifted-in in synch with the clock pulses on SCL that are generated by the master device. It does not generate the clock, but it can hold the clock line SCL low while the local host is required to intervene (ROVR) following the reception of a byte.

## 2.6.1 Arbitration

If two or more master transmitters start a transmission on the same bus almost simultaneously, an arbitration procedure is invoked. The arbitration procedure uses the data presented on the serial bus by the competing transmitters. When a transmitter senses that a high signal it has presented on the bus has been overruled by a low signal, it switches to the slave receiver mode, sets the arbitration lost (AL) flag, and generates the arbitration lost interrupt. Figure 22 shows the arbitration procedure between two devices. The arbitration procedure gives priority to the device that transmits the serial data stream with the lowest binary value. Should two or more devices send identical first bytes, arbitration continues on the subsequent bytes.



Figure 22. Arbitration Procedure Between Two Master Transmitters

## 2.6.2 I<sup>2</sup>C Clock Generation and I<sup>2</sup>C Clock Synchronization

Under normal conditions, only one master device generates the clock signal, SCL. During the arbitration procedure, however, two or more master devices and the clock must be synchronized so that the data output can be compared. The wired-AND property of the clock line means that a device that first generates a low period of the clock line overrules the other devices. At this high/low transition, the clock generators of the other devices are forced to start generation of their own low period. The clock line is then held low by the device with the longest low period, while the other devices that finish their low periods must wait for the clock line to be released before starting their high periods. A synchronized signal on the clock line is thus achieved, where the slowest device determines the length of the low period and the fastest the length of the high period.

If a device pulls down the clock line for a longer time, the result is that all clock generators must enter the WAIT state. In this way, a slave can slow down a fast master, and the slow device can create enough time to store a received byte or prepare a byte to be transmitted. Figure 23 illustrates the clock synchronization.





### 2.6.3 Prescaler (SCLK/ICLK)

The I<sup>2</sup>C module is operated with an internal approximately 12-MHz clock (ICLK). This clock is generated via the I<sup>2</sup>C prescaler block. The prescaler consists of an 8-bit register. I<sup>2</sup>C \_PSC is used for dividing down the system clock (SCLK) to obtain an approximately 12-MHz clock for the I<sup>2</sup>C module.





## 2.6.4 Noise Filter

The noise filter suppresses any noise that is 50 ns or less. It is designed to suppress noise with 1 ICLK, assuming the lower and upper limits of ICLK are 8 MHz and 16 MHz, respectively.

### 2.6.5 I<sup>2</sup>C Interrupts

The I<sup>2</sup>C module generates six types of interrupts: Arbitration-lost, no-acknowledge, general call, registers-ready-for-access, receive, and transmit. These six interrupts are accompanied by six interrupt masks and flags defined in the I2C\_IE and I2C\_STAT registers, respectively.

☐ Arbitration lost interrupt (AL): Generated when the I<sup>2</sup>C arbitration procedure is lost.

- No-acknowledge interrupt (NACK): Generated when the master I<sup>2</sup>C does not receive an acknowledge from the receiver.
- General call interrupt (GC): Generated when the device detects the address of all zeros (8 bits).
- Registers-ready-for-access interrupt (ARDY): Generated by the I<sup>2</sup>C when the previously programmed address, data, and command have been performed and the status bits have been updated. This interrupt is used to let the LH know that the I<sup>2</sup>C registers are ready for access.
- Receive interrupt/status (RRDY): Generated when there is received data ready to be read by the LH from the I2C\_DATA register. The LH can poll this bit to read the received data from the I2C\_DATA register.
- Transmit interrupt/status (XRDY): Generated when the LH needs to put more data in the I2C\_DATA register after the transmitted data has been shifted out on the SDA pin. The LH can poll this bit to write the next transmitted data into the I2C\_DATA register.

When the interrupt signal is activated, the local host must read the I2C\_STAT register to define the type of interrupt, process the request, and then write into this register the right value to clear the interrupt flag.

### 2.6.6 DMA Events

The I<sup>2</sup>C module can generate two DMA requests events, read (I2C\_DMA\_RX) and write (I2C\_DMA\_TX), that the DMA controller can use to synchronously read received data from the I2C\_DATA and write transmitted data to the I2C\_DATA register. The DMA read and write requests are generated in a similar manner as RRDY and XRDY, respectively.

The I<sup>2</sup>C DMA request signals (I2C\_DMA\_TX and I2C\_DMA\_RX) are activated for every new 16-bit word to be read or written in the FIFOs.

## 2.7 Register Map

Table 18 lists the revision, interrupt enable, I<sup>2</sup>C status, system status, buffer configuration, data counter, and data access registers. Table 19 through Table 26 describe the register bits.

Start address: FFFB 3800

| Table 18.       | Regis          | ster N              | Лар      |     |    |          |          |         |        |                 |   |           |                 |                 |                 |                 |           |
|-----------------|----------------|---------------------|----------|-----|----|----------|----------|---------|--------|-----------------|---|-----------|-----------------|-----------------|-----------------|-----------------|-----------|
| Name            | Addr<br>Offset | 15                  | 14       | 13  | 12 | 11       | 10       | 9       | 8      | 7               | 6 | 5         | 4               | 3               | 2               | 1               | 0         |
| I2C_REV         | 0x00           |                     |          |     |    |          |          |         |        |                 |   |           | RI              | ΞV              |                 |                 |           |
| I2C_IE          | 0x04           |                     |          |     |    |          |          |         |        |                 |   | GC<br>_IE | XR<br>DY<br>_IE | RR<br>DY<br>_IE | AR<br>DY<br>_IE | NA<br>CK<br>_IE | AL_<br>IE |
| I2C_STAT        | 0x08           | SB<br>D             |          |     | BB | RO<br>VR | XU<br>DF | AA<br>S |        |                 |   | GC        | XR<br>DY        | RR<br>DY        | AR<br>DY        | NA<br>CK        | AL        |
| Reserved        | 0x0C           |                     |          |     |    |          |          |         |        |                 |   |           |                 |                 |                 |                 |           |
| I2C_SYSS        | 0x10           |                     |          |     |    |          |          |         |        |                 |   |           |                 |                 |                 |                 | RDO<br>NE |
| I2C_BUF         | 0x14           | RD<br>MA<br>_E<br>N |          |     |    |          |          |         |        | XDM<br>A_E<br>N |   |           |                 |                 |                 |                 |           |
| I2C_CNT         | 0x18           |                     |          |     |    |          |          |         | DC     | OUNT            |   |           |                 |                 |                 |                 |           |
| I2C_DATA        | 0x1C           |                     |          |     |    |          |          |         | D      | ATA             |   |           |                 |                 |                 |                 |           |
| I2C_SYSC        | 0x20           |                     |          |     |    |          |          |         |        |                 |   |           |                 |                 |                 | SR<br>ST        |           |
| I2C_CON         | 0x24           | I2C<br>_E<br>N      | BE       |     |    | ST<br>B  | MS<br>T  | TR<br>X | X<br>A |                 |   |           |                 |                 |                 | ST<br>P         | STT       |
| I2C_OA          | 0x28           |                     |          |     |    |          |          |         |        |                 |   | C         | DA              |                 |                 |                 |           |
| I2C_SA          | 0x2C           |                     |          |     |    |          |          |         |        |                 |   | 5         | SA              |                 |                 |                 |           |
| I2C_PSC         | Ox30           |                     |          |     |    |          |          |         |        |                 |   |           | PS              | SC              |                 |                 |           |
| I2C_SCLL        | 0x34           |                     |          |     |    |          |          |         |        |                 |   |           | SC              | CLL             |                 |                 |           |
| I2C_SCLH        | 0x38           |                     |          |     |    |          |          |         |        |                 |   |           | SC              | LH              |                 |                 |           |
| I2C_SYSTE<br>ST | 0x3C           | ST<br>_E<br>N       | FRE<br>E | ТМО | DE | SS<br>B  |          |         |        |                 |   |           |                 | SC<br>L<br>_I   | SC<br>L<br>_O   | SD<br>A<br>_I   | SDA<br>_O |

All bits defined as reserved must be written by software with zeros to preserve future compatibility. When read, any reserved bit returns 0. Also, note that it is good software practice to use complete mask patterns for setting or testing bit fields individually within a register.

Table 19. Module Revision Register(I2C\_REV)

| Bit  | Name | Description           |
|------|------|-----------------------|
| 15:8 | -    | Reserved              |
| 7:0  | REV  | Module version number |

SPRU760C

This read-only register contains the hard-coded revision number of the module. A write to this register has no effect.

### Module Revision Number (REV)

This 8-bit field indicates the revision number of the current I<sup>2</sup>C controller module. Its value is fixed by hardware and corresponds to the RTL revision of this module.

The 4 LSBs indicate a minor revision. The 4 MSBs indicate a major revision.

For example:

- Ox20: Revision 2.0
- Ox21: Revision 2.1

A reset has no effect on the value returned.

#### Note:

I<sup>2</sup>C controller with interrupt using interrupt vector register (I2C\_IV) is revision 1.x.

 $\rm I^2C$  controller with interrupt using status register bits (I2C\_STAT) is revision 2.x.

Table 20. Interrupt Enable Register(I2C\_IE)

| Bit  | Name    | Description                            |
|------|---------|----------------------------------------|
| 15:6 | -       | Reserved                               |
| 5    | GC_IE   | General call interrupt enable          |
| 4    | XRDY_IE | Transmit data ready interrupt enable   |
| 3    | RRDY_IE | Receive data ready interrupt enable    |
| 2    | ARDY_IE | Register access ready interrupt enable |
| 1    | NACK_IE | No acknowledgment interrupt enable     |
| 0    | AL_IE   | Arbitration lost interrupt enable      |

This R/W register controls the interrupts mask/unmask function.

The following are common to all bits:

When the local host sets a bit location to 1, an interrupt is signaled to the local host if the corresponding bit location in I2C\_STAT (status register) is asserted to 1 by the core of the I<sup>2</sup>C controller. If it is set to 0, the interrupt is masked and is not signaled to the local host.

- 0: Interrupt disabled
- 1: Interrupt enabled

Value after reset is low (all bits).

Table 21. Status Register(I2C\_STAT)

| Bit   | Name | Description                        |
|-------|------|------------------------------------|
| 15    | SBD  | Single byte data                   |
| 14:13 | _    | Reserved                           |
| 12    | BB   | Bus busy                           |
| 11    | ROVR | Receive overrun                    |
| 10    | XUDF | Transmit underflow                 |
| 9     | AAS  | Address as slave                   |
| 8:6   | -    | Reserved                           |
| 5     | GC   | General call                       |
| 4     | XRDY | Transmit data ready                |
| 3     | RRDY | Receive data ready                 |
| 2     | ARDY | Register access ready              |
| 1     | NACK | No acknowledgment interrupt enable |
| 0     | AL   | Arbitration lost interrupt enable  |

This register is composed of read-only and read-/clear-only registers. It provides core status information for interrupt handling and other  $I^2C$  control management.

## Single Byte Data (SBD)

This read-only bit is set to 1 in slave-receive or master-receive modes when the last byte that was read from the I2C\_DATA register contains a single valid byte.

The core clears this bit to 0 when the local host clears the register access ready interrupt flag.

#### Note:

When SBD = 1, in little-endian data format (I2C\_CON:BE = 0), the MSB reads as 0x00, and in big-endian format (I2C\_CON:BE = 1), the LSB reads as 0x00.

Whenever the number of bytes to be received is unknown (for example, slave receiver), the LH must poll this bit before clearing the register access ready interrupt flag.

- 0: No action
- 1: Single valid byte in last 16-bit data read

Value after reset is low.

### Bus Busy (BB)

This read-only bit indicates the state of the serial bus.

In slave mode, on reception of a start condition, the device sets BB to 1. BB is cleared to 0 after reception of a stop condition.

In master mode, the software controls BB. To start a transmission with a start condition, MST, TRX, and STT must be set to 1 in the I2C\_CON register. To end a transmission with a stop condition, STP must be set to 1 in the I2C\_CON register. When BB = 1, and STT is set to a 1, a restart condition is generated.

- 0: Bus is free
- 1: Bus is occupied

Value after reset is low.

#### Receive Overrun (ROVR)

Receive mode only.

This read-only bit indicates whether the receiver has experienced overrun. Overrun occurs when the shift register is full and the receive FIFO is full. An overrun condition does not result in a data loss; the peripheral is just holding the bus (low on SCL) to prevent others bytes from being received.

ROVR is set to 1 when the I<sup>2</sup>C recognizes an overrun.

ROVR is clear when reading the I2C\_DATA register, or when resetting the I<sup>2</sup>C (I2C\_CON:I2C\_EN = 0).

70 Serial Interfaces

O: Normal operation

1: Receiver overrun

Value after reset is low.

### Transmit Underflow (XUDF)

Transmit mode only.

This read-only bit indicates whether the transmitter has experienced underflow.

In the master transmit mode, underflow occurs when the shift register is empty, the transmit FIFO is empty, and there are still some bytes to transmit (DCOUNT  $\neq$  0).

In the slave transmit mode, underflow occurs when the shift register is empty, the transmit FIFO is empty, and there are still some bytes to transmit (read request from external  $I^2C$  master).

XUDF is set to 1 when the I<sup>2</sup>C recognizes an underflow. The core holds the line till the underflow cause disappears.

XUDF is clear when writing the I2C\_DATA register or resetting the I<sup>2</sup>C (I2C\_CON:I2C\_EN = 0).

- O: Normal operation
- □ 1: Transmit underflow

Value after reset is low.

#### Address As Slave (AAS)

The device sets this bit to 1 when it recognizes its own slave address or an address of all zeros (8 bits). The AAS bit is reset to 0 by restart or stop.

- 0: No action
- 1: Address as slave

Value after reset is low.

## General Call (GC)

The device sets this read-/clear-only bit to1 if it detects the address of all zeros (8 bits), that is, general call.

#### SPRU760C

When the core sets this bit to 1, an interrupt is signaled to the local host if the interrupt was enabled.

The LH is able to clear this bit only by writing a 1 into this register. Writing 0 has no effect.

When this bit is set to 1, AAS also reads as 1.

- 0: No action
- 1: General call

Value after reset is low.

#### Transmit Data Ry (XRDY)

Transmit mode only.

This read-/clear-only bit (XRDY) is set to 1 when the I<sup>2</sup>C peripheral is a master or slave transmitter, the LH is able to write new data into the I2C\_DATA register, and the transmitter still requires new data. A master transmitter requests new data if DCOUNT  $\neq$  0, and a slave transmitter requests new data if a read request is received from external master.

The transmitter requests two bytes to be written even if only a single byte is needed. In this case, the other byte needs to be filled with a dummy 0x00 value that is not transmitted over the I<sup>2</sup>C line.

When the core sets this bit to 1, an interrupt is signaled to the local host if the interrupt was enabled. The LH can also poll this bit to write new transmitted data into the I2C\_DATA register.

The LH is able to clear this bit only by writing a 1 into this register. Writing 0 has no effect.

If the DMA transmit mode is enabled, this bit is not set. Instead, a DMA TX request to the main DMA controller of the system is generated.

0: Transmit buffer full (or receiver mode)

1: Transmit data ready (for write) and byte is needed

Value after reset is low.

#### Receive Data Ry (RRDY)

This read-/clear-only RRDY is set to 1 when the LH is able to read new data from the I2C\_DATA register. When the core sets this bit to 1, an interrupt is signaled to the local host if the interrupt was enabled. The LH can also poll this bit to read the received data in I2C\_DATA register.

72 Serial Interfaces
The LH is able to clear this bit only by writing a 1 into this register. Writing 0 has no effect.

In interrupt mode, the LH needs to poll this bit after each read to I2C\_DATA to ensure that there is no other DATA on the FIFO waiting to be read. Indeed, the RRDY needs to be cleared to 0 in order to receive a new RRDY interrupt.

If the DMA receive mode is enabled, this bit is not set. Instead, a DMA RX request to the main DMA controller of the system is generated.

- 0: Receive buffer empty
- □ 1: Receive data ready (for read)

Value after reset is low.

#### Register Access Ry (ARDY)

When set to 1, this read-/clear-only bit indicates that the previously programmed data and command (receive or transmit, master or slave) has been performed and the status bit has been updated. The LH uses this flag to let it know that the I<sup>2</sup>C registers are ready to be accessed again (see Table 22).

| Mode                       | Others  | ARDY Set Conditions                               |
|----------------------------|---------|---------------------------------------------------|
| Master transmit            | STP = 1 | DCOUNT = 0                                        |
| Master receive             | STP = 1 | DCOUNT = 0 and receiver FIFO empty                |
| Master transmit or receive | STP = 0 | DCOUNT passed 0                                   |
| Slave transmit             | _       | Stop or restart condition received from master    |
| Slave receive              | _       | Stop or restart condition and receiver FIFO empty |

The LH is able to clear this bit only by writing a 1 into this register. Writing 0 has no effect.

- 0: No action
- □ 1: Access ready

Value after reset is low.

#### No Acknowledgment (NACK)

The read-/clear-only NO\_ACKNOWLEDGE flag bit is set when the hardware detects NO\_ACKNOWLEDGE has been received.

The LH is able to clear this bit only by writing a 1 into this register. Writing 0 has no effect.

- O: Normal/no action required
- 1: NACK

Value after reset is low.

#### Arbitration\_Lost (AL)

The read-/clear-only ARBITRATION\_LOST flag bit is set to 1 when the device in the master transmitter mode senses it has lost an arbitration. This occurs when two or more transmitters start a transmission almost simultaneously, or when the  $I^2C$  attempts to start a transfer while BB (bus busy) is 1.

When this is set to 1 due to arbitration lost, the core automatically clears the MST/STP bits in the I2C\_CON register and the I<sup>2</sup>C becomes a slave receiver.

The LH is able to clear this bit only by writing a 1 to this register. Writing 0 has no effect.

- O: Normal/no action required
- 1: Arbitration lost

Value after reset is low.

Table 23. System Status Register(I2C\_SYSS)

| Bit  | Name   | Description |
|------|--------|-------------|
| 15:1 | -      | Reserved    |
| 0    | RDONE- | Reset Done  |

#### Reset Done (RDONE)

This read-only bit indicates the state of the reset in case of hardware reset, global software reset (I2C\_SYSC.SRST), or partial software reset (I2C\_CON.I2C\_EN).

The module must receive all its clocks before it can grant a reset-completed status.

- O: Internal module reset is ongoing or partially held in reset
- □ 1: Reset completed

Value after reset is low.

Table 24. Buffer Configuration Register(I2C\_BUF)

| Bit  | Name    | Description                 |
|------|---------|-----------------------------|
| 15   | RDMA_EN | Receive DMA channel enable  |
| 14:8 | -       | Reserved                    |
| 7    | XDMA_EN | Transmit DMA channel enable |
| 6:0  | -       | Reserved                    |

This R/W register enables DMA transfers.

# Receive DMA Channel Enable (RDMA\_EN)

When this bit is set to 1, the receive DMA channel is enabled and the core forces the receive data ready status bit (I2C\_STAT:RRDY) to 0.

- O: Receive DMA channel disabled
- 1: Receive DMA channel enabled

Value after reset is low.

#### Transmit DMA Channel Enable (XDMA\_EN)

When this bit is set to 1, the transmit DMA channel is enabled and the core forces the transmit data ready status (I2C\_STAT:XRDY) bit to 0.

- O: Transmit DMA channel disabled
- 1: Transmit DMA channel enabled

Value after reset is low.

| Table 25. | Data | Counter | Register | (I2C CI | VT) |
|-----------|------|---------|----------|---------|-----|
|           |      |         |          | . —     |     |

| Bit  | Name   | Description |
|------|--------|-------------|
| 15:0 | DCOUNT | Data count  |

This R/W register controls the numbers of bytes in the I<sup>2</sup>C data payload.

### Data Count (DCOUNT)

Master modes only (receive or transmit).

This 16-bit countdown counter decrements by 1 for every byte received or sent. A write initializes DCOUNT to a saved initial value. A read returns the number of bytes that are yet to be received or sent. A read into DCOUNT returns the initial value only before a start condition and after a stop condition.

When DCOUNT reaches 0, the core generates a stop condition if a stop condition was specified (I2C\_CON:STP = 1), and the ARDY status flag is set to 1 in the I2C\_STAT register.

If I2C\_CON:STP = 0, then the I<sup>2</sup>C asserts SCL = 0 when DCOUNT reaches 0. The LH can then reprogram DCOUNT to a new value and resume sending or receiving data with a new start condition (restart). This process repeats until the LH sets the STP to 1 in the I2C\_CON register.

The ARDY flag is set each time DCOUNT reaches 0 and DCOUNT is reloaded to its initial value.

In slave mode (receive or transmit), DCOUNT is not used.

0x0: Data counter = 65536 bytes ( $2^{16}$ )

0x1: Data counter = 1 bytes

 $\downarrow \downarrow$ 

0xFFFF: Data counter = 65535 bytes ( $2^{16}$  –1)

DCOUNT value after reset is 0x0000.

Table 26. Data Access Register(I2C\_DATA)

| Bit  | Name | Description                |
|------|------|----------------------------|
| 15:0 | DATA | Transmit/Receive FIFO data |
|      |      |                            |

This register is the entry point for the local host to read data from or write data to the FIFO buffer. The FIFO size is  $2 \times 16$  bits (4 bytes). Bytes within a word are stored and read in little-endian format (I2C\_CON:BE = 0) or big-endian format (I2C\_CON:BE = 1).

#### Transmit/Receive FIFO Data Value (DATA)

When read, this register contains the received I<sup>2</sup>C data packet (1 or 2 bytes). This register must be accessed 16-bit-wise by the LH. In the case of an odd number of bytes received to read, the upper byte (with I2C\_CON.BE = 0) or the lower byte (with I2C\_CON.BE = 1) of the last access always reads as 0x00. The LH must check the SBD status bit in I2C\_STAT register in order to flush this null byte.

When written, this register contains the byte(s) value(s) to transmit over the I<sup>2</sup>C data line (1or 2 bytes). This register must be accessed 16-bit-wise, except for the last byte in case of an odd number of bytes to transmit. The last byte of the data packet can be written using a byte write access or a 16-bit-wise access. In the 16-bit-wise access, the module transmits only the relevant byte, based on the byte counter (I2C\_CNT). This feature is useful for DMA access, which supports only one word size per channel.

In SYSTEST loopback mode (I2C\_SYSTEST:TMODE = 11), this register is also the entry/receive point for the data.

Values after reset are low (all 16-bits).

A read access when the buffer is empty returns the previous read data value. A write access when the buffer is full is ignored. In both events, the FIFO pointers are not updated and a remote access error (hardware error) is generated (access qualifier). No remote error is generated if the local host performs a 16-bit access if the buffer contains a single byte.

 Table 27.
 I<sup>2</sup>C System Configuration Register(I2C\_SYSC)

| Bit  | Name | Description |
|------|------|-------------|
| 15:2 | -    | Reserved    |
| 1    | SRST | Soft Reset  |
| 0    | -    | Reserved    |

#### Soft Reset (SRST)

When this bit is set to 1, all of the module is reset, as for the hardware reset. The core automatically sets this bit to 0, and it is only reset by the hardware reset. During reads, it always returns 0.

0: Normal mode

1: The module is reset

Values after reset is low.

Table 28. I<sup>2</sup>C Configuration Register(I2C\_CON)

| Bit   | Name   | Description                                  |
|-------|--------|----------------------------------------------|
| 15    | I2C_EN | I <sup>2</sup> C module enable               |
| 14    | BE     | Big endian mode                              |
| 13:12 | -      | Reserved                                     |
| 11    | STB    | Start byte mode (master mode only)           |
| 10    | MST    | Master/slave mode                            |
| 9     | TRX    | Transmitter/Receiver mode (master mode only) |
| 8     | XA     | Expand address                               |
| 7:2   | -      | Reserved                                     |
| 1     | STP    | Stop condition (master mode only)            |
| 0     | STT    | Start condition (master mode only)           |

#### **Active Transfer Phase**

During an active transfer phase (STT has been set to 1), no modification must be done in this register. Changing it may result in an unpredictable behavior.

### I<sup>2</sup>C Module Enable (I2C\_EN)

When this bit is set to 0, the I<sup>2</sup>C controller is not enabled and reset. When 0, the receive and transmit FIFOs are cleared and all status bits are set to their default values. None of the configuration registers (I2C\_IE, I2C\_BUF, I2C\_CNT, I2C\_CON, I2C\_OA, I2C\_SA, I2C\_PSC, I2C\_SCLL and I2C\_SCLH) are reset, all keep their initial values, and all can be accessed. The LH must set this bit to 1 for normal operation.

- 0: I<sup>2</sup>C controller in reset
- $\Box$  1: I<sup>2</sup>C module enabled

Value after reset is low.

78 Serial Interfaces

### Big Endian (BE)

When this bit is 0 (default), the FIFO is accessed in little-endian format. In transmit mode, the LSB (I2C\_DATA [7:0]) is transmitted first, and the MSB (I2C\_DATA [15:8]) is transmitted in second position over the I<sup>2</sup>C line. Conversely, in receive mode, the first, or odd, byte received (1,3, 5...) is stored in the LSB position, and the second, or even, byte received is stored in the MSB position.

When the LH sets this bit to a 1, the FIFO is accessed in big-endian format. In transmit mode, the MS byte (I2C\_DATA [15:8]) is transmitted first and the LSB (I2C\_DATA [7:0]) is transmitted in second position over the I<sup>2</sup>C line. Conversely, in receive mode, the first, or odd, byte received (1,3, 5...) is stored in the MS byte position, and the second, or even, byte received is stored in the LSB position.

- O: Little-endian mode
- 1: Big-endian mode

Value after reset is low.

#### Start Byte (STB)

Master mode only.

The local host sets the start-byte mode bit to 1 to configure the  $I^2C$  in start byte mode (I2C\_SA = 00000001). See the Philips  $I^2C$  specification Version 2.1 for more details.

- 0: Normal mode
- 1: Start byte mode

Value after reset is low.

#### Master/Slave Mode (MST)

When this bit is cleared, the I<sup>2</sup>C controller is in the slave mode and the serial clock (SCL) is received from the master device.

When this bit is set, the  $I^2C$  controller is in the master mode and it generates the serial clock.

This bit is automatically cleared at the end of the transfer on a detected stop condition and in case of arbitration lost.

- 0: Slave mode
- 1: Master mode

Value after reset is low.

#### SPRU760C

#### Transmitter/Receiver Mode (TRX)

Master mode only.

When this bit is cleared, the I<sup>2</sup>C controller is in the receiver mode, and data on data line SDA is shifted into the receiver FIFO and can be read from the I2C\_DATA register.

When this bit is set, the I<sup>2</sup>C controller is in the transmitter mode, and the data written in the transmitter FIFO via I2C\_DATA is shifted out on data line SDA.

0: Receiver mode

1: Transmitter mode

Value after reset is low. The operating modes are defined as shown in Table 29.

| Table 29. I <sup>2</sup> C Controller Transmitter/Receiver Operating Mod |
|--------------------------------------------------------------------------|
|--------------------------------------------------------------------------|

| MST | TRX | Operating Modes    |  |
|-----|-----|--------------------|--|
| 0   | х   | Slave receiver     |  |
| 0   | х   | Slave transmitter  |  |
| 1   | 0   | Master receiver    |  |
| 1   | 1   | Master transmitter |  |
|     |     |                    |  |

### Expand Address (XA)

When set, this bit expands the address to 10-bit.

- 0: 7-bit address mode
- □ 1: 10-bit address mode

Value after reset is low.

### Stop Condition (STP)

Master mode only.

The local host is able to set this bit to a 1 to generate a stop condition. The hardware resets it to 0 after the stop condition has been generated. The stop condition is generated when DCOUNT passes 0.

When this bit is not set to 1 before the end of the transfer (DCOUNT = 0), the stop condition is not generated and the SCL line is held to 0 by the master, which can restart a new transfer by setting the STT bit to 1.

O: No action or stop condition detected

1: Stop condition queried

Value after reset is low.

#### Start Condition (STT)

Master mode only.

The local host is able to set this bit to a 1 to generate a start condition. The hardware resets it to 0 after the start condition has been generated. The start/stop bits can be configured to generate different transfer formats.

O: No action or start condition generated

1: Start

Value after reset is low.

#### Table 30. STT Register Values

| STT | STP | Conditions              | <b>Bus Activities</b> |
|-----|-----|-------------------------|-----------------------|
| 1   | 0   | Start                   | S-A-D                 |
| 0   | 1   | Stop                    | Р                     |
| 1   | 1   | Start-Stop (DCOUNT = n) | S-A-D(n)D-P           |
| 1   | 0   | Start (DCOUNT = n)      | S-A-D(n)D             |

DCOUNT is the data count value in the I2C\_CNT register.

Table 31. I<sup>2</sup>C Own Address Register(I2C\_OA)

| Bit   | Name | Description |
|-------|------|-------------|
| 15:10 | -    | Reserved    |
| 9:0   | OA   | Own address |
|       |      | -           |

This register specifies the module I<sup>2</sup>C 7-bit or 10-bit address (own address).

### 2.7.1 Own Address (OA)

This field specifies either:

- A 10-bit address coded on OA [9:0] when XA (expand address, I2C\_CON [8]) is set to 1.
- A 7-bit address coded on OA [6:0] when XA (expand address, I2C\_CON [8]) is set to 0. In this case, application software must set OA [9:7] bits to 000.

Values after reset is low (all 10 bits).

Table 32. I2C\_SA: I<sup>2</sup>C Slave Address Register

| Bit   | Name | Description                                                                                            |
|-------|------|--------------------------------------------------------------------------------------------------------|
| 15:10 | -    | Reserved                                                                                               |
| 9:0   | SA   | Slave address                                                                                          |
|       |      | This register specifies the addressed I <sup>2</sup> C module 7-bit or 10-bit address (slave address). |

Slave Address (SA)

This field specifies either:

- A 10-bit address coded on SA [9:0] when XA (expand address, I2C\_CON [8]) is set to 1.
- A 7-bit address coded on SA [6:0] when XA (expand address, I2C\_CON [8]) is set to 0. In this case, application software must set SA [9:7] bits to 000.

Values after reset are high (all 10 bits).

Table 33.I<sup>2</sup>C Clock Prescaler Register(I2C\_PSC)

| Bit  | Name | Description                                                                                                                                          |  |  |
|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 15:8 | -    | Reserved                                                                                                                                             |  |  |
| 7:0  | PSC  | Prescale sampling clock divider value                                                                                                                |  |  |
|      |      | This register specifies the internal clocking of the I <sup>2</sup> C peripheral core.<br>I2C_PSC [7–0]: Prescale sampling clock divider value (PSC) |  |  |

The core uses this 8-bit value to divide the system clock (SCLK) and generate its own internal sampling clock (ICLK). The core logic is sampled at the clock rate of the system clock for the module, divided by (PSC+1).

0x0: Divide by 1 0x1: Divide by 2  $\downarrow$   $\downarrow$ 0xFF: Divide by 256

Values after reset are low (all 8 bits).

Table 34. I<sup>2</sup>C SCL Low Time Control Register(I2C\_SCLL)

| Bit  | Name | Description  |
|------|------|--------------|
| 15:8 | -    | Reserved     |
| 7:0  | SCLL | SCL low time |

This register determines the SCL low time value when master.

#### SCL Low Time (SCLL)

Master mode only.

This 8-bit value generates the SCL low time value ( $t_{LOW}$ ) when the peripheral is operated in master mode.

The SCL low time depends on the I2C\_PSC value and the ICLK time period (internal sampling clock rate):

- □ When I2C\_PSC = 0, t<sub>LOW</sub> = (SCLL+7) \* ICLK time period
- □ When I2C\_PSC = 1, t<sub>LOW</sub> = (SCLL+6) \* ICLK time period
- □ When I2C\_PSC > 1, t<sub>LOW</sub> = (SCLL+5) \* ICLK time period

The different values to compute the SCL low time are due to the synchronization stage and noise filter on the SCL line.

Values after reset are low (all 8 bits).

| Table 35. | I <sup>2</sup> C SCL | High Time | Control Register | (I2C SCLH | ) |
|-----------|----------------------|-----------|------------------|-----------|---|
|           |                      |           |                  | · —       |   |

| Bit  | Name | Description   |
|------|------|---------------|
| 15:8 | -    | Reserved      |
| 7:0  | SCLH | SCL high time |
|      |      |               |

This register determines the SCL high time value when master.

SPRU760C

Serial Interfaces 83

#### SCL High Time (SCLH)

Master mode only.

This 8-bit value generates the SCL high-time value ( $t_{HIGH}$ ) when the peripheral is operated in master mode.

The SCL high time depends on the I2C\_PSC value and the ICLK time period (internal sampling clock rate):

- $\Box$  When I2C\_PSC = 0, t<sub>HIGH</sub> = (SCLH+7) \* ICLK time period
- □ When I2C\_PSC = 1, t<sub>HIGH</sub> = (SCLH+6) \* ICLK time period
- □ When I2C\_PSC > 1, t<sub>HIGH</sub> = (SCLH+5) \* ICLK time period

The different values to compute the SCL high time are due to the synchronization stage and noise filter on the SCL line.

Values after reset are low (all 8 bits).

Table 36. System Test Register (I2C\_SYSTEST)

| Bit   | Name  | Description                       |
|-------|-------|-----------------------------------|
| 15    | ST_EN | System test enable                |
| 14    | FREE  | Free running mode (on breakpoint) |
| 13:12 | TMODE | Test mode select                  |
| 11    | SSB   | Set status bits                   |
| 10:4  | -     | Reserved                          |
| 3     | SCL_I | SCL line sense input value        |
| 2     | SCL_O | SCL line drive output value       |
| 1     | SDA_I | SDA line sense input value        |
| 0     | SDA_O | SDA line drive output value       |

### System Test Register

Never set this register for normal I<sup>2</sup>C operation.

SPRU760C

This register facilitates system-level tests by overriding some of the standard functional features of the peripheral. It can permit the test of SCL counters, control the signals that connect to I/O pins, or create digital loopback for self-test when the module is configured in system test (SYSTEST) mode. It also provides stop/no-stop functionality in debug mode.

#### System Test Enable (ST\_EN)

This bit must be set to 1 to permit other system test registers bits to be set.

- 0: Normal mode
- □ 1: System test enabled

Value after reset is low.

#### Free Running Mode After Breakpoint (FREE)

This bit determines the state of the  $I^2C$  controller when a breakpoint is encountered in the HLL debugger.

This bit can be set independently of the ST\_EN value.

FREE = 0: If the I<sup>2</sup>C controller is a master, it stops immediately after the completion of the ongoing bit transfer. If the I<sup>2</sup>C controller is a slave, it stops during the data phase transfer when one byte is completely transmitted/ received.

FREE = 1: The  $I^2C$  runs free.

- 0: Stop mode (on breakpoint condition)
- 1: Free running mode

Value after reset is low.

#### Test Mode Select (TMODE)

In normal functional mode (ST\_EN = 0), these bits are *don't care*. They always read as 00 and a write is ignored.

In system test mode (ST\_EN = 1), these bits can be set according to the following table to permit various system tests (see Table 37).

#### Table 37. Test Mode Select

| TMODE | Mode                                           |
|-------|------------------------------------------------|
| 00    | Functional mode (default)                      |
| 01    | Reserved                                       |
| 10    | Test of SCL counters (SCLL, SCLH, PSC)         |
| 11    | Loop back mode select + SDA/SCL IO mode select |
|       |                                                |

Values after reset is low (2 bits).

- □ SCL counter test mode: In this mode, the SCL pin is driven with a permanent clock as if mastered, with the parameters set in the I2C\_PSC, I2C\_SCLL, and I2C\_SCLH registers.
- ❑ Loopback mode: In the master transmit mode only, data transmitted out of the I2C\_DATA register (write action) is received in the same I2C\_DATA register via an internal path through the 1-deep FIFO buffers. The DMA and interrupt requests are normally generated if enabled.
- SDA/SCL IO mode: In this mode, the SCL IO and SDA IO are controlled via the I2C\_SYSTEST [3:0] register bits.

#### Set Status Bits (SSB)

Writing 1 into this bit also sets the six read/clear-only status bits contained in the I2C\_STAT register (bits 5:0) to 1.

Writing 0 into this bit does not clear status bits that are already set; only writing 1 into a set status bit can clear it. This bit must be cleared before attempting to clear a status bit.

0: No action

1: Set all six bits in I2C\_STAT [5:0] to 1

Value after reset is low.

#### SCL Line Sense Input Value (SCL\_I)

In normal functional mode (ST\_EN = 0), this read-only bit always reads 0.

In system test mode (ST\_EN = 1 & TMODE = 11), this read-only bit returns the logical state taken by the SCL line (either 1 or 0).

Value after reset is low.

86 Serial Interfaces

#### SCL Line Drive Output Value (SCL\_O)

In normal functional mode (ST\_EN = 0), this bit is *don't care*. It always reads 0 and a write is ignored.

In system test mode (ST\_EN = 1 & TMODE = 11), a 0 forces a low level on the SCL line, and a 1 puts the  $I^2C$  output driver to a high impedance state.

O: Forces 0 on the SCL data line

1: SCL output driver in HiZ state

Value after reset is low.

#### SDA Line Sense Input Value (SDA\_I)

In normal functional mode (ST\_EN = 0), this read-only bit always reads 0.

In system test mode (ST\_EN = 1 & TMODE = 11), this read-only bit returns the logical state taken by the SDA line (either 1 or 0).

Value after reset is low.

#### SDA Line Drive Output Value (SDA\_O)

In normal functional mode (ST\_EN = 0), this bit is *don't care*. It reads as 0 and a write is ignored.

In system test mode (ST\_EN = 1 & TMODE = 11), a 0 forces a low level on the SDA line and a 1 puts the  $I^2C$  output driver to a high impedance state.

□ 0: Forces 0 on the SDA data line

□ 1: SDA output driver in Hi-Z state

Value after reset is low.

#### 2.8 Programming Guidelines

#### 2.8.1 Main Program

#### Module Configuration Before Enabling the Module

- **Step 1:** Program the prescaler to obtain an approximately 12-MHz I<sup>2</sup>C module clock (I2C\_PSC = x; this value is to be calculated and is dependent on the system clock frequency).
- Step 2: Program the I<sup>2</sup>C clock to obtain 100K bps or 400K bps (I2C\_SCLL = x and I2C\_SCLH = x; these values are to be calculated and are dependent on the system clock frequency).
- **Step 3:** Configure its own address (I2C\_OA = x).
- **Step 4:** Take the I<sup>2</sup>C module out of reset (I2C\_CON:I2C\_EN = 1).

#### Initialization Procedure

- **Step 1:** Configure the I<sup>2</sup>C mode register (I2C\_CON) bits.
- **Step 2:** If using interrupt for transmit/receive data, enable interrupt masks (I2C\_IE).
- **Step 3:** If using DMA for transmit/receive data, enable the DMA (I2C\_BUF) and program the DMA controller.

#### **Configure Slave Address and Data Counter Registers**

In master mode, configure the slave address  $(I2C_SA = x)$  and the number of bytes associated with the transfer  $(I2C_CNT = x)$ .

#### Initiate a Transfer

Poll the bus busy (BB) bit in the I<sup>2</sup>C status register (I2C\_STAT). If it is cleared to 0 (bus not busy), configure START/STOP (I2C\_CON:STT / I2C\_CON:STP) condition to initiate a transfer.

#### **Poll Receive Data**

Poll the receive data ready interrupt flag bit (RRDY) in the I<sup>2</sup>C status register (I2C\_STAT). Use the RRDY interrupt or the DMA to read the receive data in the data receive register (I2C\_DATA).

88 Serial Interfaces

### Poll Transmit Data

Poll the transmit data ready interrupt flag bit (XRDY) in the I<sup>2</sup>C status register (I2C\_STAT). Use the XRDY interrupt or the DMA to write data into the data transmit register (I2C\_DATA).

# 2.9 Interrupt Subroutines

- Step 1: Test for arbitration lost and resolve accordingly.
- Step 2: Test for no-acknowledge and resolve accordingly.
- Step 3: Test for register access ready and resolve accordingly.
- Step 4: Test for receive data and resolve accordingly.
- Step 5: Test for transmit data and resolve accordingly.

#### **Flow Diagrams** 2.10

Figure 25. Setup Procedure



Serial Interfaces



### Figure 26. Master Transmitter Mode, Polling

SPRU760C



Figure 27. Master Receiver Mode, Polling



#### Figure 28. Master Transmitter Mode, Interrupt



Figure 29. Master Receiver Mode, Interrupt



Figure 30. Master Transmitter Mode, DMA



Figure 31. Master Receiver Mode, DMA



Figure 32. Slave Transmitter/Receiver Mode, Polling



Figure 33. Slave Transmitter/Receiver Mode, Interrupt

### 3 MicroWire Interface

This serial synchronous interface can drive up to four serial external components. For the external devices, this interface is compatible with the  $\mu$ Wire standard and is seen as the master (see Figure 34).

A transmit DMA mode is available.



Figure 34. Block Diagram

# 3.1 MicroWire Registers

Start address in the peripheral range (hex): FFFB:3000

Table 38 lists the MicroWire registers. Table 39 through Table 46 describe the individual registers.

Table 38. MicroWire Registers

| Register | Description        | R/W | Size    | Address   | Offset |
|----------|--------------------|-----|---------|-----------|--------|
| TDR      | Transmit data      | W   | 16 bits | FFFB:3000 | 0x00   |
| RDR      | Receive data       | R   | 16 bits | FFFB:3000 | 0x00   |
| CSR      | Control and status | R/W | 16 bits | FFFB:3000 | 0x04   |
| SR1      | Setup 1            | R/W | 16 bits | FFFB:3000 | 0x08   |
| SR2      | Setup 2            | R/W | 16 bits | FFFB:3000 | 0x0C   |
| SR3      | Setup 3            | R/W | 16 bits | FFFB:3000 | 0x10   |
| SR4      | Setup 4            | R/W | 16 bits | FFFB:3000 | 0x14   |
| SR5      | Setup 5            | R/W | 16 bits | FFFB:3000 | 0x18   |

SPRU760C

99

|      | Base Address = 0xFFFB 3000, Offset = 0x00 |                  |           |  |  |
|------|-------------------------------------------|------------------|-----------|--|--|
| Bit  | Name                                      | Function         | Reset     |  |  |
| 15:0 | TD                                        | Data to transmit | Undefined |  |  |

### Table 39. Transmit Data Register (TDR)

Note: MSB (bit 15) is the first transmitted bit.

Whatever its size, the word is aligned on the most-significant bit (MSB) side.

# Table 40. Receive Data Register (RDR)

|          |                       | Base Address = 0xFFFB 3000, Offset | = 0x00    |
|----------|-----------------------|------------------------------------|-----------|
| Bit      | Name                  | Function                           | Reset     |
| 15:0     | RD                    | Received data                      | Undefined |
| Note: LS | SB (bit 0) is the las | st received bit.                   |           |

Whatever its size, the word is aligned on the least-significant bit (LSB) side.

| Table 41. | Control and | Status | Register | (CSR) |
|-----------|-------------|--------|----------|-------|
|-----------|-------------|--------|----------|-------|

| Base Address = 0xFFFB 3000, Offset = 0x04 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|-------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Bit                                       | Name | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reset |
| 15                                        | RDRB | RDRB bit at 1 indicates that the receive (RDR) is full. When the controller reads the content of the RDR, this bit is cleared.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0     |
|                                           |      | This bit is read only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| 14                                        | CSRB | CSRB bit at 0 indicates that the control and status (CSR) is ready to receive new data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0     |
|                                           |      | After starting a $\mu$ Wire transfer with the CSR, this bit<br>is set to 1. When the corresponding action has been<br>done, CSRB is reset. This bit is controlled by a<br>$\mu$ Wire internal state machine running on the F_INT<br>internal clock (12 MHz/N). If the CSR is read just<br>after being written, and the MPU is running at high<br>frequency (60 MHz or 120 MHz, for instance)<br>compared to the internal clock, the CSRB status bit<br>may still be low for the first read access. The CSRB<br>latency is 0 if the transfer was initiated by modifying<br>the CS_CMD bit, but it can be 0–3 cycles if initiated<br>by the START bit. Suggested workarounds are a) to<br>have a few NOPs between initiating a $\mu$ Wire<br>transfer and checking CSRB status or, b) to check<br>that CSRB first has a high value on an initial read<br>before it goes low on a subsequent read. |       |
|                                           |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |

| Base Address = 0xFFFB 3000, Offset = 0x04 |            |                                                                                                                                                                      |           |  |
|-------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| Bit                                       | Name       | Function                                                                                                                                                             | Reset     |  |
| 13                                        | START      | <ol> <li>Start a write and/or a read process.</li> <li>This bit is automatically reset by internal logic when<br/>a write or a read process is activated.</li> </ol> | 0         |  |
|                                           |            | Send NB_BITS_WR bits (contained in TDR) to the serial output DO. If NB_BITS_WR is equal to zero, then the write process is not started.                              |           |  |
|                                           |            | Receive NB_BITS_RD bits from the serial input DI and store them in RDR.                                                                                              |           |  |
| 12                                        | CS_CMD     | 1: Set the chip-select of the selected device to its active level.                                                                                                   | 0         |  |
| 11:10                                     | INDEX      | Index of the external device<br>00: CS0<br>01: CS1<br>10: CS2<br>11: CS3                                                                                             | Undefined |  |
| 9:5                                       | NB_BITS_WR | Number of bits to transmit                                                                                                                                           | Undefined |  |
| 4:0                                       | NB_BITS_RD | Number of bits to receive                                                                                                                                            | Undefined |  |

# Table 41. Control and Status Register (CSR) (Continued)

Table 42. Setup Register 1 (SR1)

#### Base Address = 0xFFFB 3000, Offset = 0x08

| Bit  | Name        | Function                                                            | Reset           |
|------|-------------|---------------------------------------------------------------------|-----------------|
| 11   | CS1_CHK     | Idem CS0_CHK.<br>Used when the CS1 is selected.                     | 0xX (undefined) |
| 10:9 | CS1_FRQ     | Defines the frequency of the serial clock SCLK when CS1 is selected | 0xX (undefined) |
|      |             | 00 : F_INT/2<br>01 : F_INT/4<br>10 : F_INT/8<br>11 : undefined      |                 |
| 8    | CS1CS_LVL   | Defines the active level of the CS1 chip-select.                    | 0x0             |
| 7    | CS1_EDGE_WR | Idem CS0_EDGE_WR when CS1 is selected.                              | 0xX (undefined) |
| 6    | CS1_EDGE_RD | Idem CS0_EDGE_RD when CS1 is selected.                              | 0xX (undefined) |

Note: Content of this register must not be changed when a read or write process is running.

SPRU760C

| Base Address = 0xFFFB 3000, Offset = 0x08 |             |                                                                                                                                                                                                       |           |  |
|-------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| Bit                                       | Name        | Function                                                                                                                                                                                              | Reset     |  |
| 5                                         | CS0_CHK     | Before activating a write process, checks if external device is ready.                                                                                                                                | Undefined |  |
|                                           |             | 0: No check is done and the write process is<br>immediately executed.                                                                                                                                 |           |  |
|                                           |             | 1: If DI signal is low, the interface considers the external component busy; if DI is high, the interface considers the first external component ready and starts the write process.                  |           |  |
|                                           |             | Used when CS0 is selected.                                                                                                                                                                            |           |  |
| 4:3                                       | CS0_FRQ     | Defines the frequency of the serial clock SCLK when CS0 is selected (F_INT is the frequency of the internal clock).                                                                                   | Undefined |  |
|                                           |             | 00: F_INT/2<br>01: F_INT/4<br>10: F_INT/8<br>11: Undefined                                                                                                                                            |           |  |
| 2                                         | CS0CS_LVL   | Defines the active level of the chip-select by CS0                                                                                                                                                    | 0         |  |
| 1                                         | CS0_EDGE_WR | When CS0 is selected, defines the active edge of<br>the serial clock SCLK used to write data to the<br>serial input D0.<br>(Output data is generated on this edge)                                    | Undefined |  |
|                                           |             | <ul><li>0: Falling (serial clock not inverted)</li><li>0: Rising (when serial clock inverted)</li><li>1: Rising (serial clock not inverted)</li><li>1: Falling (when serial clock inverted)</li></ul> |           |  |
| 0                                         | CS0_EDGE_RD | When CS0 is selected, defines the active edge of<br>the serial clock SCLK used to read data from the<br>serial input DI.<br>(Input data is strobed on this edge)                                      | Undefined |  |
|                                           |             | 0: Falling (serial clock not inverted)<br>0: Rising (when serial clock inverted)<br>1: Rising (serial clock not inverted)<br>1: Falling (when serial clock inverted)                                  |           |  |

Table 42. Setup Register 1 (SR1) (Continued)

Note: Content of this register must not be changed when a read or write process is running.

Table 42 sets up the serial interface for the first and second external components.

| Base Address = 0xFFFB 3000, Offset = 0x0C |             |                                                                                                                           |                 |  |
|-------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------|-----------------|--|
| Bit                                       | Name        | Function                                                                                                                  | Reset           |  |
| 11                                        | CS3_CHK     | Same as CS0_CHK.<br>Used when CS3 is selected.                                                                            | Undefined       |  |
| 10:9                                      | CS3_FRQ     | Defines the frequency of the serial clock SCLK when CS3 is selected                                                       | Undefined       |  |
|                                           |             | 00: F_INT/2<br>01: F_INT/4<br>10: F_INT/8<br>11: Undefined                                                                |                 |  |
| 8                                         | CS3CS_LVL   | Defines the active level of the CS3 chip-select                                                                           | 0               |  |
| 7                                         | CS3_EDGE_WR | Same as CS0_EDGE_WR when CS3 is selected                                                                                  | Undefined       |  |
| 6                                         | CS3_EDGE_RD | Same as CS0_EDGE_RD when CS3 is selected                                                                                  | Undefined       |  |
| 5                                         | CS2_CHK     | Idem CS0_CHK.<br>Used when the CS2 is selected.                                                                           | 0xX (undefined) |  |
| 4:3                                       | CS2_FRQ     | Defines the frequency of the serial clock SCLK<br>when CS2 is selected<br>(F_INT is the frequency of the internal clock): | 0xX (undefined) |  |
|                                           |             | 00 : F_INT/2<br>01 : F_INT/4<br>10 : F_INT/8<br>11 : Undefined                                                            |                 |  |
| 2                                         | CS2CS_LVL   | Defines the active level of the CS2 chip-select.                                                                          | 0x0             |  |
| 1                                         | CS2_EDGE_WR | Idem CS0_EDGE_WR when CS2 is selected.                                                                                    | 0xX (undefined) |  |
| 0                                         | CS2_EDGE_RD | Idem CS0_EDGE_RD when CS2 is selected.                                                                                    | 0xX (undefined) |  |

**Note:** Content of this register must not be changed when a read or write process is running.

Table 43 sets up the serial interface for the first and second external components.

### Table 44. Setup Register 3 (SR3)

#### This register sets up the serial interface for the internal clock.

| Base Address = 0xFFFB 3000, Offset = 0x10 |         |                                                                                                                                                                                    |       |
|-------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Bit                                       | Name    | Function                                                                                                                                                                           | Reset |
| 2:1                                       | CK_FREQ | Defines the frequency of the internal clock, $F_INT$ ,<br>when CLK_EN = 1. All the internal logic is<br>controlled by $F_INT$ (F is the frequency of the<br>external input clock). | 00    |
|                                           |         | 00: F/2<br>01: F/4<br>10: F/7<br>11: F/10                                                                                                                                          |       |
| 0                                         | CLK_EN  | Switch off the clock if 0.                                                                                                                                                         | 0     |
|                                           |         | Switch on the clock if 1.                                                                                                                                                          |       |

Note: Content of this register must not be changed when a read or write process is running.

### Table 45. Setup Register 4 (SR4) (R/W)

#### This register sets up the serial clock polarity.

| Base Address = 0xFFFB 3000, Offset = 0x14 |        |                                    |       |
|-------------------------------------------|--------|------------------------------------|-------|
| Bit                                       | Name   | Function                           | Reset |
| 0                                         | CLK_IN | Serial clock is not inverted if 0. | 0     |
|                                           |        | Serial clock is inverted if 1.     |       |

**Note:** Content of this register must not be changed when a read or write process is running.

### Table 46. Setup Register 5 (SR5) (R/W)

| Base Address = 0xFFFB 3000, Offset = 0x18 |                 |                                                                                                                                                                                                                                                                 |             |
|-------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Bit                                       | Name            | Function                                                                                                                                                                                                                                                        | Reset Value |
| 3                                         | CS_TOGGLE_TX_EN | CS_TOGGLE_TX_EN is possible only in<br>autotransmit mode.                                                                                                                                                                                                       | 0           |
|                                           |                 | When in autotransmit mode with<br>CS_TOGGLE_TX_EN inactive, the CS does not go<br>to its active level automatically. Control the CS with<br>the CS CMD bit of the control and status register<br>(CSR) in the software.                                         |             |
|                                           |                 | CS_toggle transmit mode is disabled if 0.                                                                                                                                                                                                                       |             |
|                                           |                 | CS_toggle transmit mode is enabled if 1.                                                                                                                                                                                                                        |             |
| 2                                         | AUTO_TX_EN      | In autotransmit mode, the CS_CMD and START<br>bits of the control and status register (CSR) are not<br>used. A hardware state machine detects a TXD<br>write and automatically sets the programmed CS to<br>its active value, and then starts the transmission. | 0           |
|                                           |                 | The CS CMD and the START bits in the control and status register (CSR) are not updated during autotransmit.                                                                                                                                                     |             |
|                                           |                 | Autotransmit mode is disabled if 0.                                                                                                                                                                                                                             |             |
|                                           |                 | Autotransmit mode is enabled if 1.                                                                                                                                                                                                                              |             |
| 1                                         | IT_EN           | In IT mode, an interrupt is generated each time a<br>word has been transferred or received. This<br>interrupt is a low-level interrupt. A status register<br>(IST) allows the CPU to know which interrupt<br>(receive and/or transmit) occurred.                | 0           |
|                                           |                 | IT mode is disabled if 0.                                                                                                                                                                                                                                       |             |
|                                           |                 | IT mode is enabled if 1.                                                                                                                                                                                                                                        |             |
| 0                                         | DMA_TX_EN       | DMA transmit mode is disabled if 0.<br>DMA transmit mode is enabled if 1.                                                                                                                                                                                       | 0           |

Note: Content of this register must not be changed when a read or write process is running.

Set up the DMA, IT, AUTO\_TX, and CS\_TOGGLE modes in this register.

In DMA mode, a DMA request is initiated each time a transmission slot is available.

The maximum word size in DMA mode is 16 bits.

SPRU760C

#### Note:

You cannot use another CS in normal or DMA modes when a DMA mode is active on one specific CS.

#### Note:

To use the  $\mu$ Wire in DMA transmit mode, DMA\_EN and AUTO\_TX\_EN must be enabled, and IT\_EN is best disabled. The AUTO\_TX\_EN can be active when DMA\_EN is disabled.

### 3.2 Protocol Description

The serial port must be configured in order to use the setup registers.

This interface drives only one device at a given time. Therefore, the chip-select of the selected device must be set to its active level before starting any read or write process.

After loading the transmit data register (TDR), the write process is activated by setting the START bit to 1 and by writing a value different from zero to the NB\_BITS\_WR field.

A read process is always simultaneous with a write process, which means that at every serial clock (SCLK) cycle, data is read. After having finished a write process (if necessary), a number (defined by NB\_BITS\_RD) of SCLK cycles is generated to allow storage of data from the serial input DI.

The transmitted data word is shifted out on the rising or falling edge of the serial clock, according to the value of the \*\_EDGE\_WR bits of the setup registers. The received data word is shifted in on the falling or rising edge of the serial clock, according to the value of the \*\_EDGE\_RD bits of the setup registers. When \*\_EDGE\_WR and \*\_EDGE\_RD bits have the same value, it is assumed that the device behavior is the one shown in Figure 35. Otherwise, the required behavior of the external device is as shown in Figure 36.



On the DO line, data is generated from the  $\mu$ Wire interface on SLCK falling edge and read by the EEPROM interface on SCLK rising edge.

106 Serial Interfaces

SPRU760C

On the DI line, data is generated from the EEPROM interface on SCLK falling edge and read by the  $\mu$ Wire interface on SCLK falling edge.

Figure 36. Behavior of an XL93LC66 EEPROM Read Cycle



On the DO line, data is generated from the  $\mu$ Wire interface on SLCK falling edge and read by the EEPROM interface on SCLK rising edge.

On the DI line, data is generated from the EEPROM interface on SCLK rising edge and read by the  $\mu$ Wire interface on SCLK rising edge.

# 3.3 Example of Protocol Using a Serial EEPROM (XL93LC66)

Set up the interface by writing the following values in setup 1 register (SR1):

- CS\_EDGE\_RD = 1
- $\Box CS\_EDGE\_WR = 0$
- CSCS\_LVL = 1
- □ CS\_FRQ = 00
- CS\_CHK = 1

In this example, only two cycles (read and write) are described.

### 3.3.1 Read Cycle

- 1) Set the following fields of the control and status register (CSR):
  - NB\_BITS\_RD: 0
  - NB\_BITS\_WR: 0
  - INDEX: 00
  - CS\_CMD: 1
  - START: 0
- 2) Load the transmit data register (TDR) with:
  - 1 1 0 A7 A6 A5 A4 A3 A2 A1 A0 x x x x x x: Don't care
  - A7 ... A0: Address of the selected memory register

- 3) Wait for the CSRB bit of CSR to be reset.
- 4) Set the following fields of the control and status register (CSR):
  - NB\_BITS\_RD: 16 (decimal)
  - NB\_BITS\_WR: 11 (decimal)
  - INDEX: 00
  - CS\_CMD: 1
  - START: 1
- 5) Wait until CSRB = 0 and RDRB = 1 (status bits of CSR).
- 6) Read the content of receive data register (RDR).
- To continue reading data external component, the EEPROM, go to step 8. Else go to step 9.
- 8) Set the following fields of the control and status register (CSR):
  - NB\_BITS\_RD: 16 (decimal)
  - NB\_BITS\_WR: 0 (decimal)
  - INDEX: 00
  - CS\_CMD: 1
  - START: 1
  - Go to step 5.
- 9) Set the following fields of the control and status register (CSR):
- INDEX: 00
  - CS\_CMD: 0
  - START: 0

### 3.3.2 Write Cycle

- 1) Set the following fields of the control and status register (CSR):
  - NB\_BITS\_RD: 0
  - NB\_BITS\_WR: 0
  - INDEX: 00
  - CS\_CMD: 1
  - START: 0
- 2) Load the transmit data register (TDR) with:
  - 1 0 1 A7 A6 A5 A4 A3 A2 A1 A0 x x x x x x: Don't care
  - A7 ... A0: Address of the selected memory register
- 3) Wait for the CSRB bit of the control and status register (CSR) to be reset.
- 4) Set the following fields of the control and status register (CSR):
  - NB\_BITS\_RD: 0
  - NB\_BITS\_WR: 11 (decimal)
  - INDEX: 00
  - CS\_CMD: 1
  - START: 1
- 5) Wait for the CSRB bit of the control and status register (CSR) to be reset.
- 6) Load the transmit data register (TDR) with:
  - D15 D14 ... D0
  - D15 ... D0: Data
- 7) Set the following fields of the control and status register (CSR):
  - NB\_BITS\_RD: 0
  - NB\_BITS\_WR: 16 (decimal)
  - INDEX: 00
  - CS\_CMD 1
  - START: 1
- 8) Wait for the CSRB bit of CSR to be reset.
- 9) Set the following fields of the control and status register (CSR):
  - INDEX: 00
  - CS\_CMD: 0
  - START: 0

### 3.4 Example of Protocol Using an LCD Controller (COP472-3)

Set up the interface by writing in setup 1 register (SR1) the following value:

- □ CS\_EDGE\_RD = 1
- $\Box$  CS\_EDGE\_WR = 0
- $\Box CSCS_LVL = 0$
- □ CS\_FRQ = 10
- □ CS\_CHK = 0

This example describes a loading sequence to drive a four-digit display.

SPRU760C

Serial Interfaces 109

#### 3.4.1 Loading Sequence

- 1) Set the following fields of the control and status register (CSR):
  - NB\_BITS\_RD: 0
  - NB\_BITS\_WR: 0
  - INDEX: 01
  - CS\_CMD: 1
  - START: 0
- 2) Wait for the CSRB bit of the control and status register (CSR) to be reset.
- 3) Load the transmit data register (TDR) with:
  - D7d1...D0d1 D7d2...D0d2 D7d1...D0d1: Data for digit 1
  - D7d2...D0d2: Data for digit 2
- 4) Set the following fields of the control and status register (CSR):
  - NB\_BITS\_RD: 0
  - NB\_BITS\_WR: 16 (decimal)
  - INDEX: 01
  - CS\_CMD: 1
  - START: 1
- 5) Wait for the CSRB bit of the control and status register (CSR) to be reset.
- 6) Load the transmit data register (TDR) with:
  - D7d3...D0d3 D7d4...D0d4 D7d3...D0d3: Data for digit 3
  - D7d4...D0d4: Data for digit 4
- 7) Set the following fields of the control and status register (CSR):
  - NB\_BITS\_RD: 0
  - NB\_BITS\_WR: 16 (decimal)
  - INDEX: 01
  - CS\_CMD: 1
  - START: 1
- 8) Wait for the CSRB bit of the control and status register (CSR) to be reset.
- 9) Load the transmit data register (TDR) with:
  - D7...D0 x x x x x x x x x x : Don't care
  - D7...D0: Data for special segment and control function

10) Set the following fields of the control and status register (CSR):

- NB\_BITS\_RD: 0
- NB\_BITS\_WR: 8 (decimal)
- INDEX: 01
- CS\_CMD: 1
- START: 1
- 11) Wait for CSRB to go low, which indicates the CSR is ready to receive new data. It is advised that you read the bit before and after every write access to CSR to check the status.
- 12) Set the following fields of the control and status register (CSR):
  - INDEX: 01
  - CS\_CMD: 0
  - START: 0

### 3.5 Example of Protocol Using Autotransmit Mode

The setup 5 register (SR5) controls the autotransmit mode. The following example configures  $\mu$ Wire for a read access on CS0 with serial clock out inverted, CS autotoggle enabled, DMA request disabled, and interrupt enabled:

- 1) SR5 = DMA\_TX\_EN: 0
  - IT\_EN: 1

AUTO\_TX\_EN: 1

CS\_TOGGLE\_TX\_EN: 1

- 2)  $SR1 = CS0\_EDGE\_RD: 0$ 
  - CS0\_EDGE\_WR: 1 CS0CS\_LVL: 0
  - CS0\_FREQ: 00
  - CS0\_CHK: 1

#### Note:

Data out is latched on the falling edge of the serial clock. Data in is sampled on the rising edge.

3) SR3 = CLK\_EN: 1

CK\_FREQ: 00 (must wait for 1 ARMXOR\_CK + 1 F\_INT cycle before any other register access)

- 4) SR4 = CLK\_IN: 1
- 5) Set the following fields of the control and status register (CSR):
- □ NB\_BITS\_RD: 5
- NB\_BITS\_WR: 7
- INDEX: 00
- CS\_CMD: 0
- START: 0
- 6) Wait for the CSRB = 0 of the control and status register (CSR).
- 7) Load the transmit data register (TDR) with:
  - A6 A5 A4 A3 A2 A1 A0 x x x x x x x x x x x Don't care
  - A6 ... A0: Address of the selected memory register

Transfer is automatically started.

- 8) Wait until CSRB = 0 and RDRB = 1 (status bits of CSR).
- 9) Read the content of receive data register (RDR).
- 10) To continue reading data external component, go to 5 else go to 11.
- 11) 20
- 12) Release autotransmit mode: SR5 = AUTO\_TX\_EN: 0.
- 13) END

The corresponding behavior of the serial interface is described in Figure 37.



| WIRE_NCS    |                       |
|-------------|-----------------------|
| UWIRE_SCCLK |                       |
| UWIRE_SDO   | A6 A5 A4 A3 A2 A1 A0  |
| UWIRE_SDI   |                       |
| 112 Seria   | I Interfaces SPRU760C |

## 3.6 Example of Autotransmit Mode With DMA Support

The setup 5 register (SR5) controls the autotransmit mode and DMA mode. The following example configures  $\mu$ Wire for a 16-bit write access on CS1 with serial clock out not inverted, CS autotoggle enabled, DMA request enabled, and interrupt disabled:

- 1) Set up and enable the DMA channel.
- 2) Program the configuration registers SR1, SR3, and SR4.
- 3) Check CSRB status to ensure that the peripheral is ready to receive (low).
- 4) Program the control and status register (CSR) as follows:
- $\square$  NB\_BITS\_RD = 0
- $\square$  NB\_BITS\_WR = 16
- □ INDEX = 00
- □ CS\_CMD: = 1
- $\Box$  START = 0
- 5) Write to the setup register (SR5) to configure and initiate the transfer:
- DMA\_TX\_EN = 1
- □ IT\_EN = 0
- AUTO\_TX\_EN = 1
- CS\_TOGGLE\_TX\_EN = 1 (Note that in AUTO TX mode, setting the DMA\_TX\_EN bit to 1 starts the transfer)
- 6) When the DMA transfer is complete, check the status of CSRB to determine whether  $\mu$ Wire has finished the serial data transfer.
- 7) Write to the setup register (SR5) to disable DMA and AUTO TX mode:
- $\square$  DMA\_TX\_EN = 0
- □ IT\_EN = 0
- □ AUTO\_TX\_EN = 0
- $\Box$  CS\_TOGGLE\_TX\_EN = 0

#### Using Autostart and Autotoggle CS Mode

You must wait for a minimum of 3 x F\_INT clock cycles after the end of transfer (transition 1 to 0 detected on CSRB) before setting the SR3 register to turn off the internal clock.

### 4 Multichannel Serial Interfaces

The Multichannel Serial Interface (MCSI) is a general-purpose serial port used to interface the OMAP5912 to external devices such as Codes and other serail devices that require a continuous clock.

The MSCI peipheral is a serial interface with multichannel transmission capability. It is intended for voice/data transfer between OMAP5912 and communication and Bluetooth chipsets. The MCSI requires a continuous clock to operate and therefore does not support protocols such as I2C, SPI, Microwire or any other protocol in which a gated clock is required.

The two public MCSIs on the device provide full duplex transmission and master or slave clock control. All transmission parameters are configurable to cover the maximum number of operating conditions:

- Master or slave clock control (transmission clock and frame synchronization pulse)
- Programmable transmission clock frequency
- Single-channel or multichannel (x16) frame structure
- Programmable word length: 3 to 16 bits
- Full-duplex transmission
- Programmable frame configuration
  - Continuous or burst transmission
  - Normal or alternate framing
  - Normal or inverted frame polarity
  - Short or long frame pulse
  - Programmable oversize frame length
  - Programmable frame length
- Programmable interrupt occurrence time (TX and RX)
- Error detection with interrupt generation on wrong frame length
- DMA support for both TX and RX data transfers

### 4.1 Communication Protocol

#### 4.1.1 Configuration Parameters

The configuration parameters can be modified only if the MCSI is disabled  $(CONTROL\_REG[0] = 0)$ .

#### Slave/Master Control

Using the control bit, the interface can be configured in one of two ways:

- □ In master mode, with the transmission clock and the frame synchronization pulse generated by the interface
- In slave mode, with the transmission clock and the frame synchronization pulse generated from an external device

```
Control bit:
MAIN_ PARAMETERS _REG(6) = MCSI_MODE
1: Master
0: Slave
```

#### Single-Channel/Multichannel

The frame structure can be either single-channel-based (one channel per frame), or multichannel-based with the number of channels fixed at 16.

Control bit: MAIN\_ PARAMETERS \_REG(7) = MULTI 1: Multichannel 0: Single-channel

#### Short/Long Framing

The frame-synchronization pulse duration can be either short, with a pulse duration equal to the bit duration, or long, with a pulse duration equal to the channel duration.

The long frame is active only during transmission on channel 0.

Control bit: MAIN\_ PARAMETERS \_REG(8) = FRAME\_SIZE 1: Long 0: Short

#### Normal/Alternate Frame Synchronization

The frame-synchronization pulse position is either normal, with the frame-synchronization pulse starting one bit before channel 0, or alternates with the frame-synchronization pulse starting with the first bit of channel 0.

Control bit: MAIN\_ PARAMETERS \_REG(9) = FRAME\_POSITION 1: Alternate 0: Normal

#### Continuous/Burst Mode

The frame mode is either continuous with one frame-synchronization pulse at the first frame, or bursts with one frame-synchronization pulse at each frame.

Control bit: MAIN\_ PARAMETERS \_REG(5) = FRAME\_MODE 1: Continuous 0: Burst

#### Normal/Inverted Clock

The polarity of the clock can be either normal, with writing on the positive edge clock and reading on the negative edge clock , or inverted, with writing on the negative edge clock and reading on the positive edge clock.

Control bit: MAIN\_ PARAMETERS \_REG(4) = CLOCK\_POLARITY 1: Inverted 0: Normal

#### Normal/Inverted Frame Synchronization

The polarity of the frame-synchronization pulse can be either normal, with a positive pulse, or inverted, with a negative pulse.

Control bit: MAIN\_ PARAMETERS \_REG(10) = FRAME\_POLARITY 1: Inverted 0: Normal

#### **Channel Used**

To enable a channel in multimode, set bit n for the desired channel n.

116 Serial Interfaces

#### Word Size

To choose the size of the word, set its size minus one into the main parameters registers.

Control bit: MAIN\_PARAMETERS\_REG(3:0) = WORD\_ SIZE (2 <= WORD\_ SIZE <= 15)

The MCSI transmits and receives the most significant bit first. For example, if the word\_size equals 11, the upper 12 bits of the TX registers are transmitted, the upper 12 bits of the RX registers contain the received data, and the lower 4 bits are zeros.

### Frame Size

To add any overhead bits at the end of each frame, set the number of desired overhead bits in the over\_size\_register.

Control bit: OVER\_CLOCK\_REG(9:0) = OVER\_CLK (0<=OVER\_CLK <=1023)

### Transmission Clock Frequency

In master mode, the clock frequency is derived from the 12-MHz master clock and can be programmed from 5.8 kHz to 6 MHz in increments of 83 ns.

Control bit: CLOCK\_FREQUENCY\_REG(10:0) = CLK\_FREQ (2<=CLK\_FREQ <= 2047)

with  $(t_{CLK} = t_{12MHz} * CLK_FREQ)$ 

### 4.1.2 Sample Setup for Communication µ-Law Interface Using Interrupts

#### **MCSI** Configuration

An example of communication µ-law interface setup using interrupts follows.

- □ DSP\_Write(0x0000) = CONTROL\_REG (disable MCSI for setup)
- DSP\_Write(0x0007) = MAIN\_PARAMETERS\_REG (set up MCSI per configuration below)
  - Bit 15-14 (00b): No DMA
  - Bit 10 (0b): Positive polarity for frame
  - Bit 9 (0b): Normal synchronization mode
  - Bit 8 (0b): Short framing
  - Bit 7 (0b): Single channel
  - Bit 6 (0b): Slave mode
  - Bit 5 (0b): Burst mode
  - Bit 4 (0b): Positive edge for clock
  - Bit 3-0 (0111b): 8-bit data
- DSP\_Write(0x0700) = INTERRUPTS\_REG (all interrupts are enabled)
- □ DSP\_Write(0x0000) = OVER\_CLOCK\_REG
- □ DSP\_Write(0x0001) = CONTROL\_REG (start MCSI)

### Transmit Data Loading (TX\_INT ISR)

DSP\_Write = TX\_REG

### Received Data Loading (RX\_INT ISR)

DSP\_Read = RX\_REG

#### Stop MCSI

- □ DSP\_Write(0x0000) = CONTROL\_REG (disable MCSI clock)
- □ DSP\_Write(0x0002) = CONTROL\_REG (reset MCSI registers)

118 Serial Interfaces



Communication µ-Law Interface Interrupts Waveform Example Figure 38.

#### 4.1.3 **Interface Management**

#### Interrupts Generation

Three physical interrupts are available for real-time management of the MCSI by the DSP:

- RX INT (data receive interrupt)
- TX INT (data transmit interrupt)
- FERR\_INT (frame duration error interrupt)

RX\_INT, TX\_INT, and FERR\_INT are maskable with dedicated programmable control bits of the interrupt register INTERRUPTS REG.

- □ RX\_INT is masked when MASK\_IT\_RX = 0.
- □ TX\_INT is masked when MASK\_IT\_TX = 0.
- □ FERR\_INT is masked when MASK\_IT\_ERROR = 0.

Each interrupt is associated with a flag bit in the STATUS\_REG register that is set to 1 when the interrupt is generated. To acknowledge the interrupt and release the corresponding physical signal, the DSP must write a 1 at the bit location in the status register. The following list provides interrupt/flag bit associations:

- RX\_INT (RX\_READY flag and acknowledge bit)
- □ TX\_INT (TX\_READY flag and acknowledge bit)
- FERR\_INT (FRAME \_ERROR flag and acknowledge bit)

#### **Receive Interrupt**

The receive interrupt is generated every frame after the completion of the reception of a data word:

- □ In single-channel mode, the interrupt is generated one half-clock period (plus a synchronization delay) after the reception of the word.
- In multichannel mode, the interrupt is generated one half-clock period (plus a synchronization delay) after the reception of the word of the channel whose number is defined by the NB\_CHAN\_IT\_RX parameter of INTERRUPTS\_REG register.

#### Note:

If MCSI is in slave mode, the clock must be driven after valid data reception until the interrupt is generated and must not be gated before then, because the interrupt is generated on the MCSI interface clock.



### Transmit Interrupt

The transmit interrupt is generated every frame after the start of the transmission of a data word.

- In single-channel mode, the interrupt is generated one clock period after the beginning of the transmission of the word.
- In multichannel mode, the interrupt is generated one clock period after the transmission of the word of the channel whose number is defined by the NB\_CHAN\_IT\_RX parameter of INTERRUPTS\_REG register.



#### Frame Duration Error Interrupt

The frame duration error interrupt is only generated when:

- The interface is configured in burst mode (CONTINUOUS = 0).
- The frame duration is smaller or longer than the expected value.

Namely, expected frame duration = [(channels number) \* (word size)] + (over-size number) in clock periods units with over-size number defined in OVER\_SIZE\_REG register.

If the frame duration is longer than the expected value, then the interrupt is generated one clock period after the number of the over\_size clock periods, as defined in OVER\_CLOCK parameter.

If the frame duration is smaller than the expected value, then the interrupt is generated one clock period after the occurrence of the next frame pulse (first active edge).



### 4.1.4 Interrupt Programming

At module reset, RX\_INT, TX\_INT, and FERR\_INT are masked.

To validate an interrupt:

If in multichannel mode, the RX and TX interrupts can be configured to occur in a dedicated channel of the frame [1-16].

DSP\_WRITE(channel\_nb) = INTERRUPTS\_REG(3:0) for RX\_INT
 INTERRUPTS REG(7:4) for TX INT

Unmask the interrupt:

### □ DSP\_WRITE(1) =

- INTERRUPTS\_REG(8) for RX\_INT
- INTERRUPTS\_REG(9) for TX\_INT
- INTERRUPTS\_REG(10) for FERR\_INT

On interrupt occurrence:

- DSP\_READ =
  - STATUS\_REG(0) for FERR\_INT occurrence
  - STATUS\_REG(2) for RX\_INT occurrence
  - STATUS\_REG(3) for RX character overflow
  - STATUS\_REG(4) for TX\_INT occurrence
  - STATUS\_REG(5) for TX character underflow

Then, to release the interrupt signal and reset the corresponding status bits:

- DSP\_WRITE(1) =
  - STATUS\_REG(0) for FERR\_INT release
  - STATUS\_REG(2) for RX\_INT release
  - STATUS\_REG(4) for TX\_INT release

### 4.1.5 DMA Channel Operation

Both transmit and receive operations can be supported by DMA. DMA support is enabled by control bits in the MAIN\_PARAMETERS\_REG:

- $\square MAIN_PARAMETERS_REG(15:14) = DMA_ENABLE(1:0)$ 
  - TX\_DMA\_REQ enabled when DMA\_ENABLE(0) = 1
  - TX\_DMA\_REQ disabled when DMA\_ENABLE(0) = 0
  - RX\_DMA\_REQ enabled when DMA\_ENABLE(1) = 1
  - RX\_DMA\_REQ disabled when DMA\_ENABLE(1) = 0

#### Transmit DMA Transfers

A new transmit DMA transfer is initiated during the transmission of the last channel of a frame, at which time all data in the transmit registers (TX\_REGs) has been moved to shift registers; the TX\_REGs are now ready to be rewritten. If N channels are used, the DMA controller successively accesses all consecutive registers between TX\_REG(0) and TX\_REG(N-1). If some channels between TX\_REG(0) and TX\_REG(N-1) are not used, the DMA controller writes dummy values when addressing these unused registers (see Figure 43).





#### **Receive DMA Transfers**

A receive DMA transfer is initiated after the reception of the last channel of a frame, at which time all receive registers RX\_REG have been updated and are ready to be read. If N channels are used, the DMA controller successively accesses all consecutive registers between RX\_REG(0) and RX\_REG(N-1). If some channels between RX\_REG(0) and RX\_REG(N-1) are not used, the DMA controller reads dummy values when addressing these unused registers (see Figure 44).



Figure 44. Receive DMA Transfers

A multichannel application cannot use DMA for some channels and interrupt servicing for others. RX/TX interrupts are not generated when DMA RX/TX transfers are enabled.

### 4.1.6 Interface Activation

### Start Sequence

A typical sequence to start the interface is:

- 1) MCSI configuration:
  - a) DSP\_WRITE(0x0000)= CONTROL\_REG in order to remove the write protection on the control registers
  - b) DSP\_WRITE(0x....)= MAIN\_PARAMETERS\_REG
  - c) DSP\_WRITE(0x....)= INTERRUPTS\_REG
  - d) DSP\_WRITE(0x....)= CHANNEL\_USED\_REG
  - e) DSP\_WRITE(0x....)= CLOCK\_FREQUENCY\_REG
  - f) DSP\_WRITE(0x....)= OVER\_CLOCK\_REG
- 2) Transmit data loading for selected channels:
  - a) DSP\_WRITE(0x...)= TX\_REG[channel index]
- 3) Enable MCSI clock:
  - a) DSP\_WRITE(0x0001)= CONTROL\_REG

#### Stop Sequence

A typical sequence to stop the interface is:

1) Disable MCSI clock: DSP\_WRITE(0x0000) = CONTROL\_REG

The status register keeps its content even after the stop of the transmission. The control registers can now be modified.

2) Software reset: DSP\_WRITE(0x0002) = CONTROL\_REG

The software reset initializes the status register.

#### Software Reset

The MCSI software reset is activated with the SW\_RESET bit of the control register (CONTROL\_REG) (see Table 52, *Activity Control Register*).

This reset is limited to the control and status registers, the internal state machine, and the PISO and SIPO logic. The parameters registers are not affected by this software reset.

On the software reset, the MCSI reference clock is disabled, thus halting the execution of any current operating mode.

### 4.1.7 Functional Mode Timing Diagrams

The following timing diagrams are based on a positive clock polarity with parameter  $CLOCK_POL = 0$ .

(Transmit on rising edge/receive on falling edge.)

### Single-Channel/Alternate Long Framing





126 Serial Interfaces



# OVER\_CLOCK\_REG = 0x0003

## Single-Channel/Alternate Short Framing/Continuous/Burst

Figure 47. Single-Channel/Alternate Short Framing/Continuous/Burst



### Multichannel/Normal Short Framing/Channel4 Disable





# Multichannel/Alternate Long Framing/Continuous/Burst



OVER\_CLOCK\_REG = 0x0013

# Multichannel/Normal Short Framing/Burst





OVER\_CLOCK\_REG = 0x0013

# Single-Channel/Normal Short Framing



128 Serial Interfaces



#### 

# Single-Channel/Normal Long Framing/Burst



### Single-Channel/Normal Long Framing/Continuous



# Single-Channel/Alternate Short Framing



# Single-Channel/Alternate Short Framing/Burst



130 Serial Interfaces

# 4.2 MCSI Register Descriptions

Table 47 through Table 55 describe the MCSI registers. The CHANNEL\_USED\_REG, CLOCK\_FREQUENCY\_REG, OVER\_CLOCK\_REG, INTERRUPTS\_REG, and MAIN\_PARAMETERS\_REG registers are write protected if the MCSI is enabled (CONTROL\_REG[0] = 1).

The channel selection register is only used in multichannel mode.

Table 47. Channel Selection Register (CHANNEL\_USED\_REG)

| Bit | Name     | Access | Hardware<br>Reset |
|-----|----------|--------|-------------------|
| 15  | USE_CH15 | R/W    | 0                 |
| 14  | USE_CH14 | R/W    | 0                 |
| 13  | USE_CH13 | R/W    | 0                 |
| 12  | USE_CH12 | R/W    | 0                 |
| 11  | USE_CH11 | R/W    | 0                 |
| 10  | USE_CH10 | R/W    | 0                 |
| 9   | USE_CH9  | R/W    | 0                 |
| 8   | USE_CH8  | R/W    | 0                 |
| 7   | USE_CH7  | R/W    | 0                 |
| 6   | USE_CH6  | R/W    | 0                 |
| 5   | USE_CH5  | R/W    | 0                 |
| 4   | USE_CH4  | R/W    | 0                 |
| 3   | USE_CH3  | R/W    | 0                 |
| 2   | USE_CH2  | R/W    | 0                 |
| 1   | USE_CH1  | R/W    | 0                 |
| 0   | USE_CH0  | R/W    | 0                 |

USE\_CH[i] selects channel [i] for data transmission (active high).

### Table 48. Clock Frequency Register (CLOCK\_FREQUENCY\_REG)

The clock frequency register is used only in master mode when the interface generates the serial clock.

| Bit   | Name     | Description                                                                                                                                                                                                                                      | Access | Hardware<br>Reset |
|-------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------|
| 15:11 | Unused   |                                                                                                                                                                                                                                                  | R      | 00000             |
| 10:0  | CLK_FREQ | Division factor of 12-MHz reference clock<br>(2<=CLK_FREQ<= 2047)                                                                                                                                                                                | R/W    | 000 0000 0000     |
|       |          | In master mode, this register defines the transmission<br>baud rate from a frequency ratio based on a 12-MHz<br>reference clock. The transmission clock frequency can<br>be programmed from 5.8 kHz to 6 MHz in steps or<br>increments of 83 ns. |        |                   |
|       |          | Clock frequency = 12 MHz/CLK_FREQ with 2 <= CLK_FREQ <= 2047.                                                                                                                                                                                    |        |                   |
|       |          |                                                                                                                                                                                                                                                  |        |                   |

CLK\_FREQ: division factor of 12-MHz reference clock (2<=CLK\_FREQ<= 2047)

In master mode, this register defines the transmission baud rate from a frequency ratio based on a 12-MHz reference clock. The transmission clock frequency can be programmed from 5.8 kHz to 6 MHz in steps or increments of 83 ns.

Clock frequency = 12 MHz / CLK\_FREQ with 2 <= CLK\_FREQ <= 2047.

Table 49. Oversized Frame Dimension Register (OVER\_CLOCK\_REG)

| Bit   | Name       | Description                                                         | Access | Hardware<br>Reset |
|-------|------------|---------------------------------------------------------------------|--------|-------------------|
| 15:10 | Unused     |                                                                     | R      | 0000 00           |
| 9:0   | OVER_CLOCK | Overhead clock periods in frame duration<br>(0 = OVER_CLOCK = 1023) | R/W    | 00 0000 0000      |

### Table 50. Interrupt Masks Register (INTERRUPTS\_REG)

| Bit   | Name          | Description                                          | Access | Reset  |
|-------|---------------|------------------------------------------------------|--------|--------|
| 15:11 | Unused        |                                                      | R      | 0000 0 |
| 10    | MASK_IT_ERROR | Mask of frame duration error interrupt (active at 0) | R/W    | 0      |
| 9     | MASK_IT_TX    | Mask of transmit interrupt (active at 0)             | R/W    | 0      |

|     |                             |                                                                            |        | Hardware |
|-----|-----------------------------|----------------------------------------------------------------------------|--------|----------|
| Bit | Name                        | Description                                                                | Access | Reset    |
| 8   | MASK_IT_RX                  | Mask of receive interrupt (active at 0)                                    | R/W    | 0        |
| 7:4 | Number channel for<br>IT_TX | Channel number for transmit interrupt<br>generation<br>(0 <=NB_CHAN <= 15) | R/W    | 0000     |
| 3-0 | Number channel for<br>IT_RX | Channel number for receive interrupt<br>generation<br>(0 <= NB_CHAN <=15)  | R/W    | 0000     |

 Table 50.
 Interrupt Masks Register (INTERRUPTS\_REG) (Continued)

Table 51. Main Parameters Register (MAIN\_PARAMETERS\_\_REG)

| Bit   | Name                | Value | Description                                            | Access | Hardware<br>Reset |
|-------|---------------------|-------|--------------------------------------------------------|--------|-------------------|
| 15:14 | DMA enable          |       | Enable bits for DMA:                                   | R/W    | 00                |
|       |                     | 00    | Normal mode (No DMA)                                   |        |                   |
|       |                     | 01    | DMA transmit mode, normal receive mode                 |        |                   |
|       |                     | 10    | Normal transmit mode, DMA receive mode                 |        |                   |
|       |                     | 11    | DMA transmit and receive mode                          |        |                   |
| 13:11 | Reserved            |       | Reserved bits. These bits must always be written as 0. | R/W    | 000               |
| 10    | FSYNCH_POLA<br>RITY |       | Frame-synchronization pulse polarity                   | R/W    | 0                 |
|       |                     | 0     | Positive                                               |        |                   |
|       |                     | 1     | Negative                                               |        |                   |
| 9     | FSYNCH_MODE         |       | Frame-synchronization pulse position                   | R/W    | 0                 |
|       |                     | 0     | Normal                                                 |        |                   |
|       |                     | 1     | Alternate                                              |        |                   |
| 8     | FSYNCH_SIZE         |       | Frame-synchronization pulse shape                      | R/W    | 0                 |
|       |                     | 0     | Short                                                  |        |                   |
|       |                     | 1     | Long                                                   |        |                   |
| 7     | Multi/single        |       | Frame structure                                        | R/W    | 0                 |

SPRU760C

Serial Interfaces 133

#### **Multichannel Serial Interfaces**

| Bit | Name               | Value | Description                                                                      | Access | Hardware<br>Reset |
|-----|--------------------|-------|----------------------------------------------------------------------------------|--------|-------------------|
|     |                    | 0     | Single                                                                           |        |                   |
|     |                    | 1     | Multi                                                                            |        |                   |
| 6   | MCSI mode          |       | Interface transmission mode                                                      | R/W    | 0                 |
|     |                    | 0     | Slave                                                                            |        |                   |
|     |                    | 1     | Master                                                                           |        |                   |
| 5   | Continuous/burst   |       | Frame mode                                                                       | R/W    | 0                 |
|     |                    | 0     | Burst                                                                            |        |                   |
|     |                    | 1     | Continuous                                                                       |        |                   |
| 4   | CLOCK_POLARI<br>TY |       | Clock edge selection                                                             | R/W    | 0                 |
|     |                    | 0     | Positive                                                                         |        |                   |
|     |                    | 1     | Negative                                                                         |        |                   |
| 3:0 | Word size          |       | Word size in bits number (2 <= size <= 15) with 2 for 3 bits and 15 for 16 bits. | R/W    | 0000              |

Table 51. Main Parameters Register (MAIN\_PARAMETERS\_\_REG) (Continued)

# Table 52. Activity Control Register (CONTROL\_REG)

| Bit  | Name                | Value | Description                                                  | Access | Hardware<br>Reset   | Software<br>Reset   |
|------|---------------------|-------|--------------------------------------------------------------|--------|---------------------|---------------------|
| 15:3 | Reserved            |       | Reserved bits. These bits<br>must always be written as<br>0. | R      | 0000 0000<br>0000 0 | 0000 0000<br>0000 0 |
| 2    | Reserved            |       | Reserved bits. These bits<br>must always be written as<br>0. | R/W    | 0                   | 0                   |
| 1    | MCSI software reset |       | Asynchronous reset of<br>MCSI module                         | R/W    | 0                   | 1                   |
|      |                     | 0     | Disable                                                      |        |                     |                     |
|      |                     | 1     | Enable                                                       |        |                     |                     |

| Bit | Name              | Value | Description                 | Access | Hardware<br>Reset | Software<br>Reset |
|-----|-------------------|-------|-----------------------------|--------|-------------------|-------------------|
| 0   | MCSI clock enable |       | Enable clock of MCSI module | R/W    | 0                 | 0                 |
|     |                   | 0     | Disable                     |        |                   |                   |
|     |                   | 1     | Enable                      |        |                   |                   |
|     |                   |       |                             |        |                   |                   |

Table 52. Activity Control Register (CONTROL\_REG) (Continued)

#### Note:

The software reset is applied as long as the MCSI software reset bit is set to 1. A software reset disables the MSCI (the MCSI clk enable bit is cleared) and initializes the status register. It does not modify the other registers.

To clear an interrupt on the MCSI, the DSP must write to the MCSI status register with the bit corresponding to the interrupt set to 1. The MCSI status register has a two-cycle latency when writing into it, so the interrupt line is cleared two cycles after a write. To prevent clearing the interrupt handler before the interrupt line is cleared, the interrupt routine must be at least two cycles long.

| Bit  | Name         | Value | Description                                            | Access | Hardware<br>Reset | Software<br>Reset |
|------|--------------|-------|--------------------------------------------------------|--------|-------------------|-------------------|
| 15:7 | Reserved     |       | Reserved bits. These bits must always be written as 0. | R      | 0000 0000 0       | 0000 0000 0       |
| 6    | Reserved     |       | Reserved bits. These bits must always be written as 0. | R/W    | 0                 | 0                 |
| 5    | TX underflow |       | Transmit underflow                                     | R      | 0                 | 0                 |
|      |              | 0     | No under                                               |        |                   |                   |
|      |              | 1     | Under                                                  |        |                   |                   |
| 4    | TX ready     |       | Flag for transmit interrupt occurrence                 | R/W    | 0                 | 0                 |
|      |              | 0     | No interrupt                                           |        |                   |                   |
|      |              | 1     | Interrupt                                              |        |                   |                   |

Table 53. Interface Status Register (STATUS\_REG)

#### **Multichannel Serial Interfaces**

| Bit | Name                   | Value | Description                                        | Access | Hardware<br>Reset | Software<br>Reset |
|-----|------------------------|-------|----------------------------------------------------|--------|-------------------|-------------------|
| 3   | RX overflow            |       | Receive overflow                                   | R      | 0                 | 0                 |
|     |                        | 0     | No over                                            |        |                   |                   |
|     |                        | 1     | Over                                               |        |                   |                   |
| 2   | RX ready               |       | Flag for receive interrupt occurrence              | R/W    | 0                 | 0                 |
|     |                        | 0     | No interrupt                                       |        |                   |                   |
|     |                        | 1     | Interrupt                                          |        |                   |                   |
| 1   | Error type<br>few/many |       | Too short (few) or too long<br>frame (many) status | R      | 0                 | 0                 |
|     |                        | 0     | Short                                              |        |                   |                   |
|     |                        | 1     | Long                                               |        |                   |                   |
| 0   | Frame error            |       | Error flag when wrong frame duration               | R/W    | 0                 | 0                 |
|     |                        | 0     | Correct                                            |        |                   |                   |
|     |                        | 1     | Bad                                                |        |                   |                   |

# Table 53. Interface Status Register (STATUS\_REG) (Continued)

This register is cleared by a software reset.

| Table 54. | Receive W | ord Register | $(RX_{})$ | _REG[15:0]) |
|-----------|-----------|--------------|-----------|-------------|
|           |           | 0            | · –       | - 6 4/      |

| et |
|----|
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |

**Note:** The MCSI receives the most significant bit first. For example, if the word\_size equals 11, the upper 12 bits of the RX registers contain the received data, and the lower 4 bits are zeros.

| Name | Access                                                                                                                    | Hardware Reset                                                                                                                                                                                                                                                                                                                                                               |
|------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b8   | R                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                            |
| b7   | R                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                            |
| b6   | R                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                            |
| b5   | R                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                            |
| b4   | R                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                            |
| b3   | R                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                            |
| b2   | R                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                            |
| b1   | R                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                            |
| b0   | R                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                            |
|      | Name           b8           b7           b6           b5           b4           b3           b2           b1           b0 | Name         Access           b8         R           b7         R           b6         R           b5         R           b4         R           b3         R           b4         R           b3         R           b4         R           b3         R           b4         R           b3         R           b2         R           b1         R           b0         R |

Table 54. Receive Word Register (RX\_REG[15:0]) (Continued)

**Note:** The MCSI receives the most significant bit first. For example, if the word\_size equals 11, the upper 12 bits of the RX registers contain the received data, and the lower 4 bits are zeros.

| Bit | Name | Access | Hardware Reset |
|-----|------|--------|----------------|
| 15  | b15  | R/W    | U              |
| 14  | b14  | R/W    | U              |
| 13  | b13  | R/W    | U              |
| 12  | b12  | R/W    | U              |
| 11  | b11  | R/W    | U              |
| 10  | b10  | R/W    | U              |
| 9   | b9   | R/W    | U              |
| 8   | b8   | R/W    | U              |
| 7   | b7   | R/W    | U              |
| 6   | b6   | R/W    | U              |
| 5   | b5   | R/W    | U              |
| 4   | b4   | R/W    | U              |

Table 55. Transmit Word Register (TX\_REG[15:0])

**Note:** The MCSI transmits the most significant bit first. For example, if the word\_size equals 11, the upper 12 bits of the TX registers are transmitted.

| Bit | Name | Access | Hardware Reset |
|-----|------|--------|----------------|
| 3   | b3   | R/W    | U              |
| 2   | b2   | R/W    | U              |
| 1   | b1   | R/W    | U              |
| 0   | b0   | R/W    | U              |

Table 55. Transmit Word Register (TX\_REG[15:0]) (Continued)

**Note:** The MCSI transmits the most significant bit first. For example, if the word\_size equals 11, the upper 12 bits of the TX registers are transmitted.

## 5 MCSI1 and MCSI2

This section provides information specific to MCSI1 and MCSI2 on the device.

# 5.1 MCSI1 Pin Description

Table 56 identifies the MCSI1 I/O pins. Figure 58 shows the MCSI1 interface.

| Table 56. | MCSI1 | Pin Descriptions |
|-----------|-------|------------------|
|-----------|-------|------------------|

| Pin        | I/O Direction | Description           |
|------------|---------------|-----------------------|
| MCSI1.DIN  | In            | Data input            |
| MCSI1.DOUT | Out           | Data output           |
| MCSI1.CLK  | In/out        | Bit clock             |
| MCSI1.SYNC | In/out        | Frame synchronization |

Figure 58. MCSI1 Interface



# 5.2 MCSI1 Interrupt Mapping

Table 57 identifies the MCSI1 interrupt mappings. MCSI1 generates level-2 interrupts for both the DSP and the MPU. Only one MPU MCSI1 interrupt covers TX, RX, and frame error conditions; software must check the MCSI1 status register to determine the interrupt source.

#### MCSI1 and MCSI2

Table 57. MCSI1 Interrupt Mapping

| Incoming Interrupts | Level 2 DSP Interrupt | Level 2 MPU Interrupt |
|---------------------|-----------------------|-----------------------|
| MCSI1 TX interrupt  | IRQ_06                | IRQ_16                |
| MCSI1 RX interrupt  | IRQ_07                | IRQ_16                |
| MCSI1 frame error   | IRQ_10                | IRQ_16                |

## 5.3 MCSI1 DMA Request Mapping

Table 58 identifies MCSI1 DMA request lines.

Table 58. TDMA Request Mapping—MCSI1

| DMA Request Source | DMA Request Line—DSP | DMA Request Line—MPU |
|--------------------|----------------------|----------------------|
| MCSI1 TX           | DMA_REQ_01           | DMA_REQ_01           |
| MCSI1 RX           | DMA_REQ_02           | DMA_REQ_02           |

# 5.4 MCSI2 Pin Description

This section provides information specific to MCSI2 on the device.

Table 59 identifies the MCSI2 I/O pins. Figure 59 shows the MCSI2 interface.

Table 59. MCSI2 Pin Descriptions

| 1          |               |                       |
|------------|---------------|-----------------------|
| Pin        | I/O Direction | Description           |
| MCSI2.DIN  | In            | Data input            |
| MCSI2.DOUT | Out           | Data output           |
| MCSI2.CLK  | In/out        | Bit clock             |
| MCSI2.SYNC | In/out        | Frame synchronization |

Figure 59. MCSI2 Interface



# 5.5 MCSI2 Interrupt Mapping

Table 60 identifies the MCSI2 interrupts. MCSI2 generates level-2 interrupts for both the DSP and the MPU. Only one MPU MCSI2 interrupt covers TX, RX, and frame error conditions; software must check the MCSI2 status register to determine the interrupt source.

#### MCSI1 and MCSI2

Table 60. MCSI2 Interrupt Mapping

| Incoming Interrupts | Level 2 DSP Interrupt | Level 2 MPU Interrupt |
|---------------------|-----------------------|-----------------------|
| MCSI2 TX interrupt  | IRQ_08                | IRQ_17                |
| MCSI2 RX interrupt  | IRQ_09                | IRQ_17                |
| MCSI2 frame error   | IRQ_11                | IRQ_17                |

# 5.6 MCSI2 DMA Request Mapping

Table 61 identifies MCSI2 DMA request lines. Only the DSP DMA controller can transfer MCSI2 data; there is no MPU DMA capability.

Table 61. DMA Request Mapping—MCSI2

| DMA Request Source | DMA Request Line—DSP | DMA Request Line—MPU |
|--------------------|----------------------|----------------------|
| MCSI2 TX           | DMA_REQ_03           | -                    |
| MCSI2 RX           | DMA_REQ_04           | -                    |

# 6 UARTs

There are three nearly identical UART modules on this device. The modules are identical except for the fact that UART2 does not support infrared data association (IrDA). UART1 and UART3 support IrDA. This section describes all 3 UART modules. Note that discussions regarding IrDA apply only to UART1 and UART3. This section includes a register description and a module configuration example. It also shows the the basic UART IrDA module pins.

Figure 60. UART IrDA Signals







### 6.1 Main Features

- □ Selectable UART/IrDA modes
- Dual 64 entry FIFOs for received and transmitted data
- Programmable and selectable transmit and receive FIFO trigger levels for DMA and interrupt generation
- Programmable sleep mode
- Complete status reporting capabilities in both normal and sleep modes
- Frequency prescaler values from 0 to 16383 to generate the appropriate baud rates
- Single 48-MHz clock reference for baud setting
- Two DMA requests and one interrupt request to the system

144 Serial Interfaces
### 6.1.1 UART/Modem Functions

- Baud-rate from 300 bits/s up to 3.6864M bits/s
- Autobaud between 1200 bits/s and 115.2K bits/s
- Software/hardware flow control
  - Programmable Xon/Xoff characters
  - Programmable auto-RTS and auto-CTS
- Programmable serial interface characteristics
  - 5-, 6-, 7-, or 8-bit characters
  - Even, odd, mark (always = 1), space (always = 0) or no parity (non parity bit frame) bit generation and detection
  - 1, 1.5, or 2 stop-bit generation
- False start bit detection
- Line break generation and detection
- Fully prioritized interrupt system controls
- Internal test and loopback capabilities
- Modem control functions (CTS, RTS, DSR, DTR, RI and DCD)

#### 6.1.2 IrDA Functions

- Slow infrared (SIR 115.2 KBAUD), medium infrared (MIR 0.576 MBAUD) and fast infrared (FIR 4.0 MBAUD) operations. Very fast infrared (VFIR) is not supported.
- □ Framing error, cyclic redundancy check (CRC) error, illegal symbol (FIR), abort pattern (SIR, MIR) detection.
- □ 8-entry status FIFO (with selectable trigger levels) available to monitor frame length and frame errors.

In Table 62, the module I/O description is at the module level.

| Signal | I/O | Description                                                                                                                                                                                                                                                                                                      | Reset   |
|--------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|        |     | UART/MODEM Signals (UART 1,2,3)                                                                                                                                                                                                                                                                                  |         |
| RX     | Ι   | Serial data input.                                                                                                                                                                                                                                                                                               | Unknown |
| ТХ     | 0   | Serial data output.                                                                                                                                                                                                                                                                                              | 1       |
| CTS    | Ι   | Clear to send.                                                                                                                                                                                                                                                                                                   | Unknown |
|        |     | Active-low modem status signal. Reading bit 4 of the modem status register checks the condition of CTS. Reading bit 0 of that register checks a change of state of CTS since the last read of the modem status register. CTS is used in auto-CTS mode to control the transmitter.                                |         |
| RTS    | 0   | Request to send.                                                                                                                                                                                                                                                                                                 | 1       |
|        |     | When active (low), the module is ready to receive data. Setting modem control register bit 1 activates $\overline{\text{RTS}}$ . It becomes inactive as a result of a module reset, loopback mode, or by clearing the MCR[1]. In auto-RTS mode, it becomes inactive as a result of the receiver threshold logic. |         |
| DSR    | Ι   | Data set ready.                                                                                                                                                                                                                                                                                                  | Unknown |
|        |     | Active-low modem status signal. Reading bit 5 of the modem status register checks the condition of DSR. Reading bit 1 of that register checks a change of state of DSR since the last read of the modem status register.                                                                                         |         |
| DTR    | 0   | Data terminal ready.                                                                                                                                                                                                                                                                                             | 1       |
|        |     | Active-low modem control signal. Reading bit 0 of the modem control register checks the condition of DTR.                                                                                                                                                                                                        |         |
| DCD    | Ι   | Data carrier detect.                                                                                                                                                                                                                                                                                             | Unknown |
|        |     | Active-low modem status signal. The condition of DCD is checked by reading bit 7 of the modem status register, and any change in its state can be detected by reading bit 3 of that register.                                                                                                                    |         |
| RI     | Ι   | Reading indicator.                                                                                                                                                                                                                                                                                               | Unknown |
|        |     | Active-low modem status signal. The condition of RI is checked by reading bit 6 of the modem status register, and any change in its state is detected by reading bit 2 of that register.                                                                                                                         |         |

# Table 62. I/O Description

Table 62. I/O Description (Continued)

| Signal | I/O | Description                            | Reset   |
|--------|-----|----------------------------------------|---------|
|        |     | IrDA Signals (UART1 and UART3 only)    |         |
| RXIR   | I   | Serial data input.                     | Unknown |
| TXIR   | 0   | Serial data output.                    | 0       |
| SD     | 0   | Signal used to configure transceivers. | 1       |

### 6.2 Control and Status Registers Description

Each register is selected using a combination of address and some LCR register bit(s) settings as shown in the following Table 63.

### 6.2.1 UART IrDA Registers Mapping

The local host can access the following registers at address = module base address + address offset. The module base address is the module start address. Register address offsets depend on the module address alignment at the system top level. The address offsets (0x13 x S) and (0x18 x S to 0x31 x S (inclusive)) are reserved and must be read as 0x00 at all times.

- □ S = 1 for 8-bit aligned addresses
- □ 2 for 16-bit aligned addresses
- 4 for 32-bit aligned addresses

All UART registers are 8-bit. Start addresses:

- UART1: FFFB 0000
- UART2: FFFB 0800
- UART3: FFFB 9800

| Address<br>Offset | Registers            |                      |                               |                  |                        |                        |
|-------------------|----------------------|----------------------|-------------------------------|------------------|------------------------|------------------------|
|                   | LCR[7] = 0           |                      | LCR[7] = 1 a<br>LCR[7:0] is r | nd<br>not 0xBF   | LCR[7:0] = 0xB         | F                      |
|                   | READ                 | WRITE                | READ                          | WRITE            | READ                   | WRITE                  |
| 0x00 x S          | RHR                  | THR                  | DLL                           | DLL              | DLL                    | DLL                    |
| 0x01 x S          | IER §                | IER §                | DLH                           | DLH              | DLH                    | DLH                    |
| 0x02 x S          | IIR                  | FCR <sup>‡</sup>     | IIR                           | FCR‡             | EFR                    | EFR                    |
| 0x03 x S          | LCR                  | LCR                  | LCR                           | LCR              | LCR                    | LCR                    |
| 0x04 x S          | MCR <sup>‡</sup>     | MCR <sup>‡</sup>     | MCR‡                          | MCR <sup>‡</sup> | XON1/ADDR1             | XON1/ADDR1             |
| 0x05 x S          | LSR                  | -                    | LSR                           | -                | XON2/ADDR2             | XON2/ADDR2             |
| 0x06 x S          | MSR/TCR <sup>†</sup> | TCR <sup>†</sup>     | MSR/TCR <sup>†</sup>          | TCR <sup>†</sup> | XOFF1/TCR <sup>†</sup> | XOFF1/TCR <sup>†</sup> |
| 0x07 x S          | SPR/TLR <sup>†</sup> | SPR/TLR <sup>†</sup> | SPR/TLR <sup>†</sup>          | SPR/TLR†         | XOFF2/TLR <sup>†</sup> | XOFF2/TLR <sup>†</sup> |
| 0x08 x S          | MDR1                 | MDR1                 | MDR1                          | MDR1             | MDR1                   | MDR1                   |
| 0x09 x S          | MDR2                 | MDR2                 | MDR2                          | MDR2             | MDR2                   | MDR2                   |
| 0x0A x S          | SFLSR                | TXFLL                | SFLSR                         | TXFLL            | SFLSR                  | TXFLL                  |
| 0x0B x S          | RESUME               | TXFLH                | RESUME                        | TXFLH            | RESUME                 | TXFLH                  |
| 0x0C x S          | SFREGL               | RXFLL                | SFREGL                        | RXFLL            | SFREGL                 | RXFLL                  |
| 0x0D x S          | SFREGH               | RXFLH                | SFREGH                        | RXFLH            | SFREGH                 | RXFLH                  |
| 0x0E x S          | BLR                  | BLR                  | UASR                          | _                | UASR                   | -                      |
| 0x0F x S          | ACREG                | ACREG                | -                             | -                | -                      | _                      |
| 0x10 x S          | SCR                  | SCR                  | SCR                           | SCR              | SCR                    | SCR                    |
| 0x11 x S          | SSR                  | _                    | SSR                           | _                | SSR                    | _                      |
| 0x12 x S          | EBLR                 | EBLR                 | _                             | _                | _                      | _                      |
| 0x14 x S          | MVR                  | -                    | MVR                           | -                | MVR                    | -                      |
| 0x15 x S          | SYSC                 | SYSC                 | SYSC                          | SYSC             | SYSC                   | SYSC                   |

Table 63. UART IrDA Registers

† In UART modes, IER[7:4] can only be written when EFR[4] = 1. In IrDA modes, EFR[4] has no effect on access to IER[7:4]. # MCR[7:5] and FCR[5:4] can only be written when EFR[4] = 1. \$ Transmission control register (TCR) and trigger level register (TLR) are accessible only when EFR[4] = 1 and MCR[6] = 1.

148 Serial Interfaces

| Address<br>Offset | Registers  |       |                                        |       |                 |       |
|-------------------|------------|-------|----------------------------------------|-------|-----------------|-------|
|                   | LCR[7] = 0 |       | LCR[7] = 1 and<br>LCR[7:0] is not 0xBF |       | LCR[7:0] = 0xBF |       |
|                   | READ       | WRITE | READ                                   | WRITE | READ            | WRITE |
| 0x16 x S          | SYSS       | SYSS  | SYSS                                   | SYSS  | SYSS            | SYSS  |
| 0x17 x S          | WER        | WER   | WER                                    | WER   | WER             | WER   |

UART IrDA Registers (Continued) Table 63.

† In UART modes, IER[7:4] can only be written when EFR[4] = 1. In IrDA modes, EFR[4] has no effect on access to IER[7:4]. <sup>‡</sup> MCR[7:5] and FCR[5:4] can only be written when EFR[4] = 1.

§ Transmission control register (TCR) and trigger level register (TLR) are accessible only when EFR[4] = 1 and MCR[6] = 1.

Offset Address (hex): 0x00 x S and LCR[7] = 0 and read

The receiver section consists of the receiver holding register (RHR) and the receiver shift register. The RHR is actually a 64-byte FIFO. The receiver shift register receives serial data from RX input. The data is converted to parallel data and moved to the RHR. If the FIFO is disabled, location 0 of the FIFO is used to store the single data character.

If an overflow occurs the data in the RHR is not overwritten.

| ding Register (RHR) |
|---------------------|
| ding Register (RHR  |

| Bit | Name | Function                 | R/W | Reset   |
|-----|------|--------------------------|-----|---------|
| 7:0 | RHR  | Receive holding register | R   | Unknown |

Offset Address (hex): 0x00 x S and LCR[7] = 0 and write

The transmitter section consists of the transmit holding register (THR) and the transmit shift register. The transmit holding register is actually a 64-byte FIFO. The LH writes data to the THR. The data is placed into the transmit shift register where it is shifted out serially on the TX output. If the FIFO is disabled, location 0 of the FIFO is used to store the data.

Table 65. Transmit Holding Register (THR)

| Bit | Name | Function                                   | R/W         | Reset         |
|-----|------|--------------------------------------------|-------------|---------------|
| 7:0 | THR  | Transmit holding register                  | W           | Unknown       |
|     |      | Offset Address (hex): 0x02 x S and LCR not | 0xBF (and E | FR[4] = 1 for |

FCR[5:4]) and write.

### **UART**s

| Bit    | Name                       | Function                                                                                                              | R/W | Reset |
|--------|----------------------------|-----------------------------------------------------------------------------------------------------------------------|-----|-------|
| 7:6    | RX_FIFO_TRIG               | Sets the trigger level for the RX FIFO:                                                                               | W   | 00    |
|        |                            | If SCR[7] = 0 and TLR[7:4] = 0000:                                                                                    |     |       |
|        |                            | 00: 8 characters<br>01: 16 characters<br>10: 56 characters<br>11: 60 characters                                       |     |       |
|        |                            | If SCR[7] = 0 and TLR[7:4] non-0, RX_FIFO_TRIG is not considered.                                                     |     |       |
|        |                            | If SCR[7] = 1, RX_FIFO_TRIG is 2 LSB of the trigger level $(1-63 \text{ on } 6 \text{ bits})$ with the granularity 1. |     |       |
| 5:4    | TX_FIFO_TRIG               | Sets the trigger level for the TX FIFO:                                                                               | W   | 00    |
|        |                            | If SCR[6] = 0 and TLR[3:0] = 0000:                                                                                    |     |       |
|        |                            | 00: 8 spaces<br>01: 16 spaces<br>10: 32 spaces<br>11: 56 spaces                                                       |     |       |
|        |                            | If SCR[6] = 0 and TLR[3:0] non-0, TX_FIFO_TRIG is not considered.                                                     |     |       |
|        |                            | If SCR[6] = 1, TX_FIFO_TRIG is 2 LSB of the trigger level (1–63 on 6 bits) with the granularity 1.                    |     |       |
| 3      | DMA_MODE                   | 0: DMA_MODE 0 (No DMA)                                                                                                | W   | 0     |
|        |                            | 1: DMA_MODE 1 (UART_nDMA_REQ[0] in TX,<br>UART_nDMA_REQ[1] in RX)                                                     |     |       |
|        |                            | This register is considered if $SCR[0] = 0$ .                                                                         |     |       |
| 2      | TX_FIFO_CLEAR              | 0: No change.                                                                                                         | W   | 0     |
|        |                            | 1: Clears the transmit FIFO and resets its counter logic to 0. Returns to 0 after clearing FIFO.                      |     |       |
| 1      | RX_FIFO_CLEAR              | 0: No change.                                                                                                         | W   | 0     |
|        |                            | 1: Clears the receive FIFO and resets its counter logic to 0. Returns to 0 after clearing FIFO.                       |     |       |
| 0      | FIFO_EN                    | 0: Disables the transmit and receive FIFOs.                                                                           | W   | 0     |
|        |                            | 1: Enables the transmit and receive FIFOs.                                                                            |     |       |
| Notos: | 1) Rite 4 and 5 can only b | e written to when $EEP[4] = 1$                                                                                        |     |       |

# Table 66. FIFO Control Register (FCR)

**Notes:** 1) Bits 4 and 5 can only be written to when EFR[4] = 1.

2) Bits 0 to 3 can be changed only when the baud clock is not running (DLL and DLH set to 0).

3) See for FCR[5:4] setting restriction when SCR[6] = 1.

4) See for FCR[7:6] setting restriction when SCR[7] = 1.

150 Serial Interfaces

### Offset Address (hex): 0x10 x S

### Table 67. Supplementary Control Register (SCR)

| Bit | Name                          | Function                                                                                                             | R/W | Reset |
|-----|-------------------------------|----------------------------------------------------------------------------------------------------------------------|-----|-------|
| 7   | RX_TRIG_GRANU1                | 0: Disables the granularity of 1 for trigger RX level.                                                               | R/W | 0     |
|     |                               | 1: Enables the granularity of 1 for trigger RX level.                                                                |     |       |
| 6   | TX_TRIG_GRANU1                | 0: Disables the granularity of 1 for trigger TX level.                                                               | R/W | 0     |
|     |                               | 1: Enables the granularity of 1 for trigger TX level.                                                                |     |       |
| 5   | DSR_IT                        | 0: Disables DSR interrupt.                                                                                           | R/W | 0     |
|     |                               | 1: Enables DSR interrupt.                                                                                            |     |       |
| 4   | RX_CTS_DSR_<br>WAKE_UP_ENABLE | 0: Disables the wake-up interrupt and clears SSR[1].                                                                 | R/W | 0     |
|     |                               | 1: Waits for a falling edge of pins RX, $\overline{\text{CTS}}$ or $\overline{\text{DSR}}$ to generate an interrupt. |     |       |
| 3   | TX_EMPTY_CTL_IT               | 0: Normal mode for THR interrupt (See UART mode interrupts table.)                                                   | R/W | 0     |
|     |                               | 1: The THR interrupt is generated when TX FIFO and TX shift register are empty.                                      |     |       |
| 2:1 | DMA_MODE_2                    | Used to specify the DMA mode valid if SCR[0] = 1                                                                     | R/W | 00    |
|     |                               | 00: DMA mode 0 (no DMA)                                                                                              |     |       |
|     |                               | 01: DMA mode 1 (UART_nDMA_REQ[0] in TX,<br>UART_nDMA_REQ[1] in RX)                                                   |     |       |
|     |                               | 10: DMA mode 2 (UART_nDMA_REQ[0] in RX)                                                                              |     |       |
|     |                               | 11: DMA mode 3 (UART_nDMA_REQ[0] in TX)                                                                              |     |       |
| 0   | DMA_MODE_CTL                  | 0: The DMA_MODE is set with FCR[3].                                                                                  | R/W | 0     |
|     |                               | 1: The DMA_MODE is set with SCR[2:1].                                                                                |     |       |

Bit 4 enables the wake-up interrupt, but this interrupt is not mapped into the IIR register. Therefore, when an interrupt occurs and there is no interrupt pending in the IIR register, the SSR[1] bit must be checked. To clear the wake-up interrupt, bit SCR[4] must be reset to 0.

Offset Address (hex): 0x03 x S

LCR[6:0] defines parameters of the transmission and reception.

#### **UART**s

| Bit | Name         | Function                                                                                                                                                       | R/W | Reset |
|-----|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|
| 7   | DIV_EN       | 0: Normal operating condition.                                                                                                                                 | R/W | 0     |
|     |              | 1: Divisor latch enable. Allows access to DLL, DLH, and other registers (refer to the registers' mapping).                                                     |     |       |
| 6   | BREAK_EN     | Break control bit                                                                                                                                              | R/W | 0     |
|     |              | 0: Normal operating condition.                                                                                                                                 |     |       |
|     |              | 1: Forces the transmitter output to go low to alert the communication terminal.                                                                                |     |       |
| 5   | PARITY_TYPE2 |                                                                                                                                                                | R/W | 0     |
| 4   | PARITY_TYPE1 | 0: Odd parity is generated (if LCR[3] = 1).                                                                                                                    | R/W | 0     |
|     |              | 1: Even parity is generated (if LCR[3] = 1).                                                                                                                   |     |       |
| 3   | PARITY_EN    | 0: No parity.                                                                                                                                                  | R/W | 0     |
|     |              | 1: A parity bit is generated during transmission and the receiver checks for received parity.                                                                  |     |       |
| 2   | NB_STOP      | Specifies the number of stop bits:<br>0: 1 stop bits (word length = 5, 6, 7, 8)<br>1: 1.5 stop bits (word length = 5)<br>1-2 stop bits (word length = 6, 7, 8) | R/W | 0     |
| 1:0 | CHAR_LENGTH  | Specifies the word length to be transmitted or received                                                                                                        | R/W | 00    |
|     |              | 00: 5 bits                                                                                                                                                     |     |       |
|     |              | 01: 6 bits                                                                                                                                                     |     |       |
|     |              | 10: 7 bits                                                                                                                                                     |     |       |
|     |              | 11: 8 bits                                                                                                                                                     |     |       |

Table 68. Line Control Register (LCR)

Offset Address (hex):  $0x05 \times S$  and LCR is not 0xBF and read

| Bit | Name        | Function                                                                                                                                                                     | R/W | Reset |
|-----|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|
| 7   | RX_FIFO_STS | 0: Normal operation.                                                                                                                                                         | R   | 0     |
|     |             | 1: At least one parity error, framing error, or break indication in the receiver FIFO. Bit 7 is cleared when no more errors are present in the FIFO.                         |     |       |
| 6   | TX_SR_E     | 0: Transmitter hold and shift registers are not empty.                                                                                                                       | R   | 1     |
|     |             | 1: Transmitter hold and shift registers are empty.                                                                                                                           |     |       |
| 5   | TX_FIFO_E   | 0: Transmit hold register is not empty.                                                                                                                                      | R   | 1     |
|     |             | 1: Transmit hold register is empty. The processor can now load up to 64 bytes of data into the THR if the TX FIFO is enabled.                                                |     |       |
| 4   | RX_BI       | 0: No break condition.                                                                                                                                                       | R   | 0     |
|     |             | 1: A break was detected while the data being read from the RX FIFO was being received (that is, RX input was low for one character time frame).                              |     |       |
| 3   | RX_FE       | 0: No framing error in data being read from RX FIFO.                                                                                                                         | R   | 0     |
|     |             | 1: Framing error occurred in data being read from RX FIFO (received data did not have a valid stop bit).                                                                     |     |       |
| 2   | RX_PE       | 0: No parity error in data being read from RX FIFO.                                                                                                                          | R   | 0     |
|     |             | 1: Parity error in data being read from RX FIFO.                                                                                                                             |     |       |
| 1   | RX_OE       | 0: No overrun error.                                                                                                                                                         | R   | 0     |
|     |             | 1: Overrun error has occurred. Set when the character held in the receive shift register is not transferred to the RX FIFO. This case occurs only when receive FIFO is full. |     |       |
| 0   | RX_FIFO_E   | 0: No data in the receive FIFO.                                                                                                                                              | R   | 0     |
|     |             | 1: At least one data character in the RX_FIFO.                                                                                                                               |     |       |

Table 69. Line Status Register (LSR) (UART Mode)

When the LSR is read, LSR[4:2] reflects the error bits [BI, FE, PE] of the character at the top of the RX FIFO (next character to be read). Therefore, reading the LSR, and then reading the RHR, identifies errors in a character.

Reading RHR updates [BI, FE, PE] (See Table 109, UART Mode Interrupts.)

LSR [7] is set when there is an error anywhere in the RX FIFO, and is cleared only when there are no more errors remaining in the FIFO.

Reading the LSR does not cause an increment of the RX FIFO read pointer. The RX FIFO read pointer is incremented by reading the RHR.

Reading LSR clears [OE] if set (See Table 109, UART Mode Interrupts.)

Bit Name Function R/W Reset 7 THR\_EMPTY 0: Transmit holding register is not empty. R 1 1: Transmit holding register is empty. The processor can now load up to 64 bytes of data into the THR if the TX FIFO is enabled. 0: Status FIFO not full. 6 STS\_FIFO\_FULL R 0 1: Status FIFO full. 0 5 RX\_LAST\_BYTE 0: The RX FIFO does not contain the last byte of R the frame to be read. 1: The RX FIFO contains the last byte of the frame to be read. This bit is set only when the last byte of a frame is available to be read. It is used to determine the frame boundary. It is cleared on a single read of the LSR register. FRAME\_TOO\_LONG 0 0: No frame-too-long error in frame. R 4 1: Frame-too-long error in the frame at the top of the STATUS FIFO, [next character to be read]. This bit is set to 1 when a frame exceeding the maximum length (set by RXFLH and RXFLL registers) has been received. When this error is detected, current frame reception is terminated. Reception is stopped until the next START flag is detected. ABORT R 0 3 0: No abort pattern error in frame. 1: Abort pattern is received. SIR & MIR: Abort pattern FIR: Illegal symbol 0000 2 CRC R 0 0: No CRC error in frame. 1: CRC error in the frame at the top of the STATUS FIFO (next character to be read).

Table 70. Line Status Register (LSR) (IR Mode)

 Table 70.
 Line Status Register (LSR) (IR Mode) (Continued)

| Bit | Name       | Function                                       | R/W | Reset |
|-----|------------|------------------------------------------------|-----|-------|
| 1   | STS_FIFO_E | 0: Status FIFO not empty.                      | R   | 1     |
|     |            | 1: Status FIFO empty.                          |     |       |
| 0   | RX_FIFO_E  | 0: At least one data character in the RX_FIFO. | R   | 1     |
|     |            | 1: No data in the receive FIFO.                |     |       |

When the LSR is read, LSR[4:2] reflects the error bits [FL, CRC, ABORT] of the frame at the top of the STATUS FIFO (next frame status to be read). See Table 110, *IrDA Mode Interrupts*.

Offset Address (hex): 0x11 x S and read

| Table 71. | Supplementar | y Status | Register | (SSR) |
|-----------|--------------|----------|----------|-------|
|           |              | /        |          | \ /   |

| Bit | Name            | Function                                      | R/W | Reset  |  |
|-----|-----------------|-----------------------------------------------|-----|--------|--|
| 7:2 | -               | Reserved                                      | R   | 000000 |  |
| 1   | RX_CTS_DSR_WAKE | 0: No falling edge event on RX, CTS and DSR.  | R   | 0      |  |
|     | _UP_STS         | 1: A falling edge occurred on RX, CTS or DSR. |     |        |  |
| 0   | TX_FIFO_FULL    | 0: TX FIFO not full.                          | R   | 0      |  |
|     |                 | 1: TX FIFO full.                              |     |        |  |
|     |                 |                                               |     |        |  |

Bit 1 is reset only when SCR[4] is reset to 0.

Offset Address (hex):  $0x04 \times S$  and LCR is not 0xBF (and EFR[4] = 1 for MCR[7:5])

MCR[3:0] controls the interface with the modem, data set, or peripheral device that is emulating the modem.

Table 72. Modem Control Register (MCR)

| Bit | Name    | Function                                                                          | R/W | Reset |
|-----|---------|-----------------------------------------------------------------------------------|-----|-------|
| 7   | -       | Reserved.                                                                         | R   | 0     |
| 6   | TCR_TLR | 0: No action.<br>1: Enables access to the TCR and TLR registers.                  | R/W | 0     |
| 5   | XON_EN  | 0: Disable the <i>XON any</i> function.<br>1: Enable the <i>XON any</i> function. | R/W | 0     |

| Bit | Name       | Function                                                                                                                              | R/W       | Reset       |
|-----|------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|
| 4   | LOOPBACK_E | N 0: Normal operating mode.                                                                                                           | R/W       | 0           |
|     |            | 1: Enable local loopback mode (internal).                                                                                             |           |             |
|     |            | In this mode, the MCR[3:0] signals are looped back into MSR[7:4]. The transmit output is looped back to the receive input internally. |           |             |
| 3   | CD_STS_CH  | 0: In loopback, forces DCD input high and IRQ outputs to inactive state.                                                              | R/W       | 0           |
|     |            | 1: In loopback, forces DCD input low and IRQ outputs to inactive state.                                                               |           |             |
| 2   | RI_STS_CH  | 0: In loopback, forces RI input high.                                                                                                 | R/W       | 0           |
|     |            | 1: In loopback, forces RI input low.                                                                                                  |           |             |
| 1   | RTS        | 0: Force RTS output to inactive (high).                                                                                               | R/W       | 0           |
|     |            | 1: Force RTS output to active (low).                                                                                                  |           |             |
|     |            | In loopback, controls MSR[4]                                                                                                          |           |             |
|     |            | If auto-RTS is enabled, the RTS output is controlled by hardware flow control.                                                        |           |             |
| 0   | DTR        | 0: Force DTR output to inactive (high).                                                                                               | R/W       | 0           |
|     |            | 1: Force DTR output to active (low).                                                                                                  |           |             |
|     |            | Bits 5 and 6 can be written only when EFR[4] = 1.                                                                                     |           |             |
|     |            | Offset Address (hex): $0x06 \times S$ and LCR is not $0xBF$ and (E = 0) and read.                                                     | FR[4] = ( | ) or MCR[6] |

Table 72. Modem Control Register (MCR) (Continued)

This register provides information about the current state of the control lines from the modem, data set, or peripheral device to the LH. It also indicates when a control input from the modem changes state.

Table 73. Modem Status Register (MSR)

| Bit | Name     | Function                                                                                                       | R/W | Reset   |
|-----|----------|----------------------------------------------------------------------------------------------------------------|-----|---------|
| 7   | NCD_STS  | This bit is the complement of the $\overline{\text{DCD}}$ input. In loopback mode it is equivalent to MCR[3].  | R   | Unknown |
| 6   | NRI_STS  | This bit is the complement of the $\overline{RI}$ input. In loopback mode it is equivalent to MCR[2].          | R   | Unknown |
| 5   | NDSR_STS | This bit is the complement of the $\overline{\text{DSR}}$ input. In loopback mode, it is equivalent to MCR[0]. | R   | Unknown |

Table 73. Modem Status Register (MSR) (Continued)

| Bit | Name     | Function                                                                                                      | R/W | Reset   |
|-----|----------|---------------------------------------------------------------------------------------------------------------|-----|---------|
| 4   | NCTS_STS | This bit is the complement of the $\overline{\text{CTS}}$ input. In loopback mode it is equivalent to MCR[1]. | R   | Unknown |
| 3   | DCD_STS  | Indicates that DCD input (or MCR[3] in loopback) has changed. Cleared on a read.                              | R   | 0       |
| 2   | RI_STS   | Indicates that RI input (or MCR[2] in loopback)<br>has changed state from low to high. Cleared on a<br>read.  | R   | 0       |
| 1   | DSR_STS  | 1: Indicates that DSR input (or MCR[0] in loop-back) has changed state. Cleared on a read.                    | R   | 0       |
| 0   | CTS_STS  | 1: Indicates that CTS input (or MCR[1] in loopback) has changed state. Cleared on a read.                     | R   | 0       |

### 6.3 Interrupt Enable Register (IER)

Offset Address (hex):  $0x01 \times S$  and LCR[7] = 0 (and EFR[4] = 1 for IER[7:4]—UART modes only)

### **UART Modes IER**

The interrupt enable register (IER) can be programmed to enable/disable any interrupt. This mode has seven types of interrupt: Receiver error, RHR interrupt, THR interrupt, XOFF received, and  $\overline{\text{CTS/RTS}}$  change of state from low to high. Each interrupt can be enabled/disabled individually. The IER also has a sleep-mode enable bit.

| Bit | Name       | Function                                                                  | R/W | Reset |
|-----|------------|---------------------------------------------------------------------------|-----|-------|
| 7   | CTS_IT     | 0: Disables the CTS interrupt.                                            | R/W | 0     |
|     |            | 1: Enables the CTS interrupt.                                             |     |       |
| 6   | RTS_IT     | 0: Disables the RTS interrupt.                                            | R/W | 0     |
|     |            | 1: Enables the RTS interrupt.                                             |     |       |
| 5   | XOFF_IT    | 0: Disables the XOFF interrupt.                                           | R/W | 0     |
|     |            | 1: Enables the XOFF interrupt.                                            |     |       |
| 4   | SLEEP_MODE | 0: Disables sleep mode.                                                   | R/W | 0     |
|     |            | 1: Enables sleep mode (stop baud rate clock when the module is inactive). |     |       |
|     |            |                                                                           |     |       |

Table 74. Interrupt Enable Register (IER) (UART Mode)

Table 74. Interrupt Enable Register (IER) (UART Mode) (Continued)

| Bit | Name         | Function                                                                                                                             | R/W | Reset |
|-----|--------------|--------------------------------------------------------------------------------------------------------------------------------------|-----|-------|
| 3   | MODEM_STS_IT | <ul><li>0: Disables the modem status register interrupt.</li><li>1: Enables the modem status register interrupt.</li></ul>           | R/W | 0     |
| 2   | LINE_STS_IT  | <ul><li>0: Disables the receiver line status interrupt.</li><li>1: Enables the receiver line status interrupt.</li></ul>             | R/W | 0     |
| 1   | THR_IT       | 0: Disables the THR interrupt.<br>1: Enables the THR interrupt.                                                                      | R/W | 0     |
| 0   | RHR_IT       | <ul><li>0: Disables the RHR interrupt and time-out interrupt.</li><li>1: Enables the RHR interrupt and time-out interrupt.</li></ul> | R/W | 0     |

Bits 4, 5, 6, and 7 can only be written when EFR[4] = 1.

### IrDA Modes IE

These modes have eight types of interrupts: received EOF, LSR interrupt, TX status, status FIFO interrupt, RX overrun, last byte in RX FIFO, THR interrupt, and RHR interrupt. All can be enabled/disabled individually.

Table 75. Interrupt Enable Register (IER) (IrDA Mode)

| Bit | Name             | Function                                                                                                                                                           | R/W | Reset |
|-----|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|
| 7   | EOF_IT           | 0: Disables the received EOF interrupt.                                                                                                                            | R/W | 0     |
| 6   | LINE_STS_IT      | <ol> <li>Enables the received EOF interrupt.</li> <li>Disables the receiver line status interrupt.</li> <li>Enables the receiver line status interrupt.</li> </ol> | R/W | 0     |
| 5   | TX_STATUS_IT     | <ul><li>0: Disables the TX status interrupt.</li><li>1: Enables the TX status interrupt.</li></ul>                                                                 | R/W | 0     |
| 4   | STS_FIFO_TRIG_IT | 0: Disables status FIFO trigger level interrupt.<br>1: Enables status FIFO trigger level interrupt.                                                                | R/W | 0     |
| 3   | RX_OVERRUN_IT    | 0: Disables the RX overrun interrupt.<br>1: Enables the RX overrun interrupt.                                                                                      | R/W | 0     |
| 2   | LAST_RX_BYTE_IT  | 0: Disables the last byte of frame in RX FIFO interrupt.                                                                                                           | R/W | 0     |
|     |                  | 1: Enables the last byte of frame in RX FIFO interrupt.                                                                                                            |     |       |

Table 75. Interrupt Enable Register (IER) (IrDA Mode) (Continued)

| Bit | Name   | Function                       | R/W | Reset |
|-----|--------|--------------------------------|-----|-------|
| 1   | THR_IT | 0: Disables the THR interrupt. | R/W | 0     |
|     |        | 1: Enables the THR interrupt.  |     |       |
| 0   | RHR_IT | 0: Disables the RHR interrupt. | R/W | 0     |
|     |        | 1: Enables the RHR interrupt.  |     |       |

The TX\_STATUS\_IT interrupt reflects two possible conditions. The MDR2[0] must be read to determine the status in the event of this interrupt.

Offset Address (hex): 0x02 x S and LCR is not 0xBF and read.

The IIR is a read-only register that provides the source of the interrupt in a prioritized manner.

Table 76. Interrupt Identification Register (IIR) (UART Mode)

| Bit | Name       | Function                                         | R/W | Reset |
|-----|------------|--------------------------------------------------|-----|-------|
| 7:6 | FCR_MIRROR | Mirror the contents of FCR[0] on both bits       | R   | 00    |
| 5:1 | IT_TYPE    |                                                  | R   | 00000 |
| 0   | IT_PENDING | 0: An interrupt is pending (UART_nIRQ active).   | R   | 1     |
|     |            | 1: No interrupt is pending (UART_nIRQ inactive). |     |       |

The UART\_nIRQ output is activated whenever one of the eight interrupts is active.

Table 77. IrDA Mode Register (IIR)

| Bit | Name         | Function                                         | R/W | Reset |
|-----|--------------|--------------------------------------------------|-----|-------|
| 7   | EOF_IT       | 0: Received EOF interrupt inactive.              | R   | 0     |
|     |              | 1: Received EOF interrupt active.                |     |       |
| 6   | LINE_STS_IT  | 0: Receiver line status interrupt inactive.      | R   | 0     |
|     |              | 1: Receiver line status interrupt active.        |     |       |
| 5   | TX_STATUS_IT | 0: TX status interrupt inactive.                 | R   | 0     |
|     |              | 1: TX status interrupt active.                   |     |       |
| 4   | STS_FIFO_IT  | 0: Status FIFO trigger level interrupt inactive. | R   | 0     |
|     |              | 1: Status FIFO trigger level interrupt active.   |     |       |

| Bit | Name                     | Function                                                                                                   | R/W | Reset |
|-----|--------------------------|------------------------------------------------------------------------------------------------------------|-----|-------|
| 3   | RX_OE_IT                 | 0: RX overrun interrupt inactive.<br>1: RX overrun interrupt active.                                       | R   | 0     |
| 2   | RX_FIFO_LAST_<br>BYTE_IT | 0: Last byte of frame in RX FIFO interrupt inactive.<br>1: Last byte of frame in RX FIFO interrupt active. | R   | 0     |
| 1   | THR_IT                   | 0: THR interrupt inactive.<br>1: THR interrupt active.                                                     | R   | 0     |
| 0   | RHR_IT                   | 0: RHR interrupt inactive.<br>1: RHR interrupt active.                                                     | R   | 0     |

Table 77. IrDA Mode Register (IIR) (Continued)

Offset Address (hex): 0x02 x S and LCR = 0xBF

This register enables or disables enhanced features. Most of the enhanced functions apply only to UART modes, but EFR[4] enables write access to FCR[5:4], the TX trigger level, which is also used in IrDA modes.

Table 78. Enhanced Feature Register (EFR)

| Bit                       | Name          | Function                                                                                                                                                                                                                                   | R/W | Reset |
|---------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|
| 7                         | AUTO_CTS_EN   | Auto-CTS enable bit                                                                                                                                                                                                                        | R/W | 0     |
|                           |               | 0: Normal operation.                                                                                                                                                                                                                       |     |       |
|                           |               | 1: Auto-CTS flow control is enabled, that is, transmission is halted when the CTS pin is high (inactive).                                                                                                                                  |     |       |
| 6 AUTO_RTS_EN             | AUTO_RTS_EN   | Auto-RTS enable bit                                                                                                                                                                                                                        | R/W | 0     |
|                           |               | 0: Normal operation.                                                                                                                                                                                                                       |     |       |
|                           |               | 1: Auto-RTS flow control is enabled. RTS pin goes<br>high (inactive) when the receiver FIFO HALT<br>trigger level, TCR[3:0], is reached, and goes low<br>(active) when the receiver FIFO RESTORE<br>transmission trigger level is reached. |     |       |
| 5 SPECIAL_CHAR_<br>DETECT | SPECIAL_CHAR_ | 0: Normal operation.                                                                                                                                                                                                                       | R/W | 0     |
|                           | DETECT        | 1: Special character detect enable.                                                                                                                                                                                                        |     |       |
|                           |               | Received data is compared with XOFF2 data. If a match occurs the received data is transferred to FIFO, and IIR bit 4 is set to 1 to indicate that a special character has been detected.                                                   |     |       |

Bit Name **Function** R/W Reset R/W 0 4 ENHANCED\_EN Enhanced functions write enable bit 0: Disables writing to IER bits 4-7, FCR bits 4-5, and MCR bits 5-7. 1: Enables writing to IER bits 4-7, FCR bits 4-5, and MCR bits 5-7. 3:0 SW\_FLOW\_ Combinations of software flow control can be R/W 0000 CONTROL selected by programming bits 3-0. See Table 79.

Table 78. Enhanced Feature Register (EFR) (Continued)

Table 79. Software Flow Control Options(EFR[0–3])

| Bit 3 | Bit 2 | Bit 1 | Bit 0 | TX, RX Software Flow Controls                           |
|-------|-------|-------|-------|---------------------------------------------------------|
| 0     | 0     | Х     | Х     | No transmit flow control                                |
| 1     | 0     | Х     | Х     | Transmit XON1, XOFF1                                    |
| 0     | 1     | Х     | Х     | Transmit XON2, XOFF2                                    |
| 1     | 1     | Х     | Х     | Transmit XON1, XON2: XOFF1, XOFF2                       |
| х     | Х     | 0     | 0     | No receive flow control                                 |
| Х     | Х     | 1     | 0     | Receiver compares XON1, XOFF1                           |
| Х     | Х     | 1     | 1     | Receiver compares XON2, XOFF2                           |
| Х     | Х     | 1     | 1     | Receiver compares XON1, XON2: XOFF1, XOFF2 <sup>†</sup> |

<sup>†</sup> XON1 and XON2 must be set to different values if software flow control is enabled.

Offset Address (hex): 0x04 x S and LCR = 0xBF

Table 80. XON1/ADDR1 Register

| Bit | Name      | Function                                                                                      | R/W | Reset |
|-----|-----------|-----------------------------------------------------------------------------------------------|-----|-------|
| 7:0 | XON_WORD1 | Used to store the 8-bit XON1 character in<br>UART modes and ADDR1 address 1 for IrDA<br>modes | R/W | 0x00  |

Offset Address (hex): 0x05 x S and LCR = 0xBF

#### **UARTs**

| Bit     | Name        | Function                                                                                | R/W         | Reset       |
|---------|-------------|-----------------------------------------------------------------------------------------|-------------|-------------|
| 7:0     | XON_WORD2   | Used to store the 8-bit XON2 character in UART modes and ADDR2 address 2 for IrDA modes | R/W         | 0x00        |
|         |             | Offset Address (hex): 0x06 x S and LCR = 0xBF and = 0)                                  | (EFR[4] = ( | 0 or MCR[6] |
| Table 8 | 32. XOFF1 R | Pegister                                                                                |             |             |

### Table 81. XON2/ADDR2 Register

| Bit | Name       | Function                                                   | R/W        | Reset       |
|-----|------------|------------------------------------------------------------|------------|-------------|
| 7:0 | XOFF_WORD1 | Used to store the 8-bit XOFF1 character used in UART modes | R/W        | 0x00        |
|     | Offset     | Address (hex): 0x07 x S and LCR = 0xBF and (               | EFR[4] = ( | 0 or MCR[6] |

### Table 83. XOFF2 Register

| Bit | Name              | Function                                                                                      | R/W                 | Reset      |    |
|-----|-------------------|-----------------------------------------------------------------------------------------------|---------------------|------------|----|
| 7:0 | XOFF_WORD2        | Used to store the 8-bit XOFF2 character used in UART modes                                    | R/W                 | 0x00       |    |
|     | Offset<br>= 0)    | Address (hex): 0x07 x S and LCR is not 0xBF and                                               | (EFR[4] =           | 0 or MCR[6 | 5] |
|     | This R<br>registe | W register does not control the module in any ver the programmer can use to hold temporary da | vay. It is a<br>ta. | scratchpad | d  |

Table 84. Scratchpad Register (SPR)

| Bit | Name     | Function            | R/W | Reset |
|-----|----------|---------------------|-----|-------|
| 7:0 | SPR_WORD | Scratchpad register | R/W | 0x00  |

### 6.3.1 Divisor Latches (DLL, DLH)

These two registers store the 14-bit divisor for generation of the baud clock in the baud rate generator. DLH stores the most-significant part of the divisor. DLL stores the least-significant part of the divisor.

DLL and DLH can only be written to before sleep mode is enabled, that is, before IER[4] is set.

Offset Address (hex): 0x00 x S and LCR[7] = 1

162 Serial Interfaces

Table 85. Divisor Latches LowRegister (DLL)

| Bit | Name      | Function                                  | R/W | Reset |
|-----|-----------|-------------------------------------------|-----|-------|
| 7:0 | CLOCK_LSB | Used to store the 8-bit LSB divisor value | R/W | 0x00  |

Offset Address (hex): 0x01 x S and LCR[7] = 1

### Table 86. Divisor Latches High Register (DLH)

| Bit | Name      | Function                                  | R/W | Reset  |
|-----|-----------|-------------------------------------------|-----|--------|
| 7:6 | -         | Reserved                                  | R   | 00     |
| 5:0 | CLOCK_MSB | Used to store the 6-bit MSB divisor value | R/W | 000000 |
|     |           |                                           |     |        |

Offset Address (hex): 0x06 x S and EFR[4] = 1 and MCR[6] = 1

This register stores the receive FIFO threshold levels to start/stop transmission during hardware/software flow control.

Table 87. Transmission Control Register (TCR)

| Bit    | Name                             | Function                                                | R/W | Reset |
|--------|----------------------------------|---------------------------------------------------------|-----|-------|
| 7:4    | RX_FIFO_TRIG_START               | RCV FIFO trigger level to RESTORE transmission (0 – 60) | R/W | 0x0   |
| 3:0    | RX_FIFO_TRIG_HALT                | RCV FIFO trigger level to HALT transmission (0 – 60)    | R/W | 0xF   |
| Notes: | 1) Trigger levels from $0 - 601$ | ovtes are available with a granularity of 4             |     |       |

 es: 1) Trigger levels from 0 – 60 bytes are available with a granularity of 4. (Trigger level = 4 x [4-bit register value])

- The programmer must ensure that TCR[3:0] > TCR[7:4] whenever auto-RTS or software flow control is enabled, to prevent device malfunction.
- 3) In FIFO interrupt mode with flow control, the programmer also must ensure that the trigger level to HALT transmission is greater than or equal to the receive FIFO trigger level (either TLR[7:4] or FCR[7:6]). Otherwise, the FIFO operation stalls. This problem does not exist in FIFO DMA mode with flow control because a DMA request is sent each time a byte is received.

Offset Address (hex): 0x07 x S and EFR[4] = 1 and MCR[6] = 1

This register stores the programmable transmit and receive FIFO trigger levels used for DMA and IRQ generation.

| Table 88. | Trigger | Level Register | (TLR) | ) |
|-----------|---------|----------------|-------|---|
|           | 00      |                |       |   |

| Bit | Name             | Function                    | R/W | Reset |
|-----|------------------|-----------------------------|-----|-------|
| 7:4 | RX_FIFO_TRIG_DMA | RCV FIFO trigger level      | R/W | 0x0   |
| 3:0 | TX_FIFO_TRIG_DMA | Transmit FIFO trigger level | R/W | 0x0   |

Table 89 and Table 90 summarize the different ways to set the trigger levels for the transmit FIFO and the receive FIFO, respectively.

Table 89. TX FIFO Trigger Level Setting Summary

| SCR[6] | TLR[3:0] | TX FIFO Trigger Level                                                                                                                                         |
|--------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0      | 0000     | Defined by FCR[5:4] (either 8,16,32, 56 spaces)                                                                                                               |
| 0      | Non-zero | Defined by TLR[3:0] (from 4 to 60 spaces with a granularity of 4 spaces)                                                                                      |
| 1      | Value    | Defined by the concatenated value of TLR[3:0] and FCR [5:4] (from 1 to 63 spaces with a granularity of 1 space).                                              |
|        |          | Note: The combination of TLR [3:0] = 0000 and FCR [5:4] = 00 (all zeros) is not supported (min 1 space required). All zeros result in unpredictable behavior. |

Table 90. RX FIFO Trigger Level Setting Summary

| SCR[7] | TLR[7:4] | RX FIFO Trigger Level                                                                                                                                            |
|--------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0      | 0000     | Defined by FCR[7:6] (either 8,16,56, 60 characters)                                                                                                              |
| 0      | Non-zero | Defined by TLR[7:4] (from 4 to 60 characters with a granularity of 4 characters)                                                                                 |
| 1      | Value    | Defined by the concatenated value of TLR[7:4] and FCR [7:6] (from 1 to 63 characters with a granularity of 1 character)                                          |
|        |          | Note: The combination of TLR[7:4] = 0000 and FCR [7:6] = 00 (all zeros) is not supported (min 1 character required). All zeros result in unpredictable behavior. |
|        |          | Offset Address (hex): 0x08 x S                                                                                                                                   |

The mode of operation is programmed by writing to MDR1[2:0]. Therefore, the MDR1 must be programmed on start-up after configuring registers DLL, DLH, and LCR. The value of MDR1[2:0] must not be changed again during normal operation.

Table 91. Mode Definition Register 1 (MDR1)

| Bit | Name           | Function                                                              | R/W | Reset |
|-----|----------------|-----------------------------------------------------------------------|-----|-------|
| 7   | FRAME_END_MODE | 0: Frame-length method.                                               | R/W | 0     |
|     |                | 1: Set EOT bit method.                                                |     |       |
| 6   | SIP_MODE       | MIR/FIR modes only                                                    | R/W | 0     |
|     |                | 0: Manual SIP mode: SIP is generated with the<br>control of ACREG[3]. |     |       |
|     |                | 1: Automatic SIP mode: SIP is generated after each transmission.      |     |       |

| Bit | Name        | Function                                                              | R/W | Reset |
|-----|-------------|-----------------------------------------------------------------------|-----|-------|
| 5   | SCT         | Store and control the transmission                                    | R/W | 0     |
|     |             | 0: Starts the IrDA transmission as soon as a value is written to THR. |     |       |
|     |             | 1: Starts the IrDA transmission with the control of ACREG[2].         |     |       |
| 4   | SET_TXIR    | Used to configure the IrDA transceiver                                | R/W | 0     |
|     |             | 0: No action.                                                         |     |       |
|     |             | 1: TXIR pin output is forced high.                                    |     |       |
| 3   | IR_SLEEP    | 0: IrDA sleep mode disabled.                                          | R/W | 0     |
|     |             | 1: IrDA sleep mode enabled.                                           |     |       |
| 2:0 | MODE_SELECT | 000: UART 16x mode                                                    | R/W | 111   |
|     |             | 001: SIR mode                                                         |     |       |
|     |             | 010: UART 16x autobaud                                                |     |       |
|     |             | 011: UART 13x mode                                                    |     |       |
|     |             | 100: MIR mode                                                         |     |       |
|     |             | 101: FIR mode                                                         |     |       |
|     |             | 110: Reserved                                                         |     |       |
|     |             | 111: Disable (default state)                                          |     |       |

Table 91. Mode Definition Register 1 (MDR1) (Continued)

Offset Address (hex): 0x09 x S

IrDA modes only.

MDR2[0] describes the status of the interrupt in IIR[5]. The IRTX\_UNDERRUN bit should be read after an IIR[5] TX\_STATUS\_IT interrupt has occurred. The bits [2:1] of this register set the trigger level for the frame status FIFO (8 entries) and must be programmed before the mode is programmed in MDR1[2:0].

| Bit | Name          | Function                                                                                                                                                                  | R/W | Reset |
|-----|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|
| 7:3 | -             | Reserved                                                                                                                                                                  | R   | 00000 |
| 2:1 | STS_FIFO_TRIG | Frame status FIFO threshold select:<br>00: 1 entry<br>01: 4 entries<br>10: 7 entries<br>11: 8 entries                                                                     | R/W | 00    |
| 0   | IRTX_UNDERRUN | IRDA transmission status interrupt                                                                                                                                        | R   | 0     |
|     |               | When the IIR[5] interrupt occurs, the meaning of the interrupt is:                                                                                                        |     |       |
|     |               | 0: IRTX last bit of the frame has been transmitted successfully without error.                                                                                            |     |       |
|     |               | 1: IRTX underrun has occurred. The last bit of the frame has been transmitted but with an underrun error present. The bit is reset to 0 when the RESUME register is read. |     |       |

Table 92. Mode Definition Register 2 (MDR2)

Offset Address (hex): 0x0E x S and LCR[7] = 1 and read

UART autobauding mode only.

This status register returns the speed, the number of bits by characters, and the type of the parity in UART autobauding mode.

In autobauding mode the input frequency of the UART modem must be fixed to 48 MHz. Any other module clock frequency results in incorrect baud rate recognition.

| Table 93. | UART Autobauding S | Status Register (UASR) |
|-----------|--------------------|------------------------|
|-----------|--------------------|------------------------|

| Bit | Name        | Function                            | R/W | Reset |
|-----|-------------|-------------------------------------|-----|-------|
| 7:6 | PARITY_TYPE | 00: No parity identified            | R   | 00    |
|     |             | 01: Parity space                    |     |       |
|     |             | 10: Even parity                     |     |       |
|     |             | 11: Odd parity                      |     |       |
| 5   | BIT_BY_CHAR | 0: 7 bits character identified.     | R   | 0     |
|     |             | 1: 8 bits character identified.     |     |       |
| 4:0 | SPEED       | Used to report the speed identified | R   | 00000 |
|     |             | 00000: No speed identified          |     |       |
|     |             | 00001: 115 200 bauds                |     |       |
|     |             | 00010: 57 600 bauds                 |     |       |
|     |             | 00011: 38 400 bauds                 |     |       |
|     |             | 00100: 28 800 bauds                 |     |       |
|     |             | 00101: 19 200 bauds                 |     |       |
|     |             | 00110: 14 400 bauds                 |     |       |
|     |             | 00111: 9 600 bauds                  |     |       |
|     |             | 01000: 4 800 bauds                  |     |       |
|     |             | 01001: 2 400 bauds                  |     |       |
|     |             | 01010: 1 200 bauds                  |     |       |

This register sets up transmission according to characteristics of previous reception instead of the LCR, DLL, and DLH registers used when UART is in autobauding mode.

To reset the autobauding hardware (to start a new AT detection) or to set the UART in standard mode (no autobaud), MDR1[2:0] must be set to reset state 111, and then to the UART in autobaud mode 010 or UART in standard mode 000.

Usage limitation:

- Only 7- and 8-bit character (5 and 6 bits not supported)
- **7**-bit character with space parity not supported
- Baud rate between 1200 and 115200 bp/s (10 possibilities)

# 6.4 Transmit Frame Length Register (TXFLL, TXFLH)

IrDA modes only.

The registers TXFLL and TXFLH hold the 13-bit transmit frame length (expressed in bytes). TXFLL holds the least-significant bits, and TXFLH holds the most-significant bits. The frame length value is used if the frame length method of frame closing is used.

Offset Address (hex): 0x0A x S and write

### Table 94. Transmit Frame Length Low Register (TXFLL)

| Bit | Name  | Function                                       | R/W | Reset |
|-----|-------|------------------------------------------------|-----|-------|
| 7:0 | TXFLL | LSB register used to specify the frame length. | W   | 0x00  |
|     |       |                                                |     |       |

Offset Address (hex): 0x0B x S and write

### Table 95. Transmit Frame Length High Register (TXFLH)

| Bit | Name  | Function                                       | R/W | Reset |
|-----|-------|------------------------------------------------|-----|-------|
| 7:5 | -     | Reserved                                       | R   | 000   |
| 4:0 | TXFLH | MSB register used to specify the frame length. | W   | 00000 |

### 6.4.1 Received Frame Length Register (RXFLL, RXFLH)

IrDA modes only.

The registers RXFLL and RXFLH hold the 12-bit receive maximum frame length. RXFLL holds the least-significant bits, and RXFLH holds the most-significant bits. If the intended maximum-receive frame length is n bytes, program RXFLL and RXFLH to be n + 3 in SIR or MIR modes and n + 6 in FIR mode (+3 and +6 are due to frame format with CRC and stop flag; there are two bytes associated with the FIR stop flag).

Offset Address (hex): 0x0C x S and write

Table 96. Received Frame Length Low Register (RXFLL)

| Bit | Name  | Function                                                   | R/W | Reset |
|-----|-------|------------------------------------------------------------|-----|-------|
| 7:0 | RXFLL | LSB register used to specify the frame length in reception | W   | 0x00  |

Offset Address (hex): 0x0D x S and write

| Table 97. | Received | Frame | Lenath | Hiah | Reaister | (RXFLF | 1)  |
|-----------|----------|-------|--------|------|----------|--------|-----|
|           |          |       |        |      |          | 1      | • / |

| Bit | Name  | Function                                                   | R/W | Reset |
|-----|-------|------------------------------------------------------------|-----|-------|
| 7:4 | -     | Reserved                                                   | R   | 0x0   |
| 3:0 | RXFLH | MSB register used to specify the frame length in reception | W   | 0x0   |

Offset Address (hex): 0x0A x S and read

IrDA modes only.

Reading this register in effect reads frame-status information from the status FIFO. This register does not physically exist. Reading this register increments the status FIFO read pointer (SFREGL and SFREGH must be read first).

### Table 98. Status FIFO Line Status Register (SFLSR)

| Bit | Name                     | Function                                                            | R/W | Reset   |
|-----|--------------------------|---------------------------------------------------------------------|-----|---------|
| 7:5 | -                        | Reserved                                                            | R   | 000     |
| 4   | OE_ERROR                 | 1: Overrun error in RX FIFO when frame at top of FIFO was received. | R   | Unknown |
| 3   | FRAME_TOO_LONG_<br>ERROR | 1: Frame-length too long error in frame at top of FIFO.             | R   | Unknown |
| 2   | ABORT_DETECT             | 1: Abort pattern detected in frame at top of FIFO.                  | R   | Unknown |
| 1   | CRC_ERROR                | 1: CRC error in frame at top of FIFO.                               | R   | Unknown |
| 0   | _                        | Reserved                                                            | R   | 0       |

Offset Address (hex): 0x0B x S and read

IrDA modes only.

This register clears internal flags that halt transmission/reception when an underrun/overrun error occurs. Reading this register resumes the halted operation. This register does not physically exist and reads always as 0x00.

| Table 99. | Resume | Register | (RESUME) |
|-----------|--------|----------|----------|
|-----------|--------|----------|----------|

| Bit | Name   | Function                           | R/W | Reset |
|-----|--------|------------------------------------|-----|-------|
| 7:0 | RESUME | Dummy read to restart the TX or RX | R   | 0x00  |

#### 6.4.2 Status FIFO Register (SFREGL, SFREGH)

IrDA modes only. The frame lengths of received frames are written into the status FIFO. This information can be read from the SFREGL and SFREGH registers. These registers do not physically exist. The least-significant bits are read from SFREGL, and the most-significant bits are read from SFREGH. Reading these registers does not alter the status FIFO read pointer. These registers must be read before the pointer is incremented by reading the SFLSR.

Offset Address (hex): 0x0C x S and read

### Table 100. Status FIFO Register Low (SFREGL)

| Bit | Name   | Function                     | R/W | Reset   |
|-----|--------|------------------------------|-----|---------|
| 7:0 | SFREGL | LSB part of the frame length | R   | Unknown |

Offset Address (hex): 0x0D x S and read

### Table 101. Status FIFO Register High (SFREGH)

| Bit | Name   | Function                     | R/W | Reset   |
|-----|--------|------------------------------|-----|---------|
| 7:4 | _      | Reserved                     | R   | 0x0     |
| 3:0 | SFREGH | MSB part of the frame length | R   | Unknown |
|     |        |                              |     |         |

Offset Address (hex): 0x0E x S and LCR[7] = 0

IrDA modes only. BLR[6] is used to select whether 0xC0 or 0xFF start patterns are to be used when multiple start flags are required in SIR mode. If only one start flag is required, the start pattern is always 0xC0. If n start flags are required, either (n-1) 0xC0 or (n-1) 0xFF flags are sent, followed by a single 0xC0 flag immediately preceding the first data byte.

Table 102. BOF Control Register (BLR)

| Bit | Name           | Function                                      | R/W | Reset  |
|-----|----------------|-----------------------------------------------|-----|--------|
| 7   | STS_FIFO_RESET | Status FIFO reset. This bit is self-clearing. | R/W | 0      |
| 6   | XBOF_TYPE      | SIR xBOF select                               | R/W | 1      |
|     |                | 0: 0xFF.                                      |     |        |
|     |                | 1: 0xC0.                                      |     |        |
| 5:0 | -              | Reserved                                      | R   | 000000 |

Offset Address (hex): 0x12 x S and LCR[7] = 0

IrDA modes only.

This register specifies the number of BOF + xBOFs to transmit in IrDA SIR operation. The value set into this register must take into account the BOF character. To send only one BOF with no XBOF, this register must be set to 1. To send one BOF with N XBOF, this register must be set to n+1. Furthermore, the value 0 sends 1 BOF plus 255 XBOF.

In IrDA MIR mode, this register specifies the number of additional start flags (MIR protocol mandates a minimum of two start flags).

Table 103. BOF Length Register (EBLR)

| Bit | Name | Function                                                                                     | R/W | Reset |
|-----|------|----------------------------------------------------------------------------------------------|-----|-------|
| 7:0 | EBLR | This register allows definition up to 176 xBOFs, the maximum required by IrDA specification. | R/W | 0x00  |
|     |      | Offset Address (hex): 0x0F x S and LCR[7] = 0                                                |     |       |

IrDA modes only.

|--|

| Bit | Name            | Function                                                                                                                       | R/W | Reset |
|-----|-----------------|--------------------------------------------------------------------------------------------------------------------------------|-----|-------|
| 7   | PULSE_TYPE      | SIR pulse width select                                                                                                         | R/W | 0     |
|     |                 | 0: 3/16 of baud-rate pulse width.                                                                                              |     |       |
|     |                 | 1: 1.6 μs.                                                                                                                     |     |       |
| 6   | SD_MOD          | Primary output used to configure transceivers.<br>Connected to the SD/MODE input pin of IrDA<br>transceivers                   | R/W | 0     |
|     |                 | 0: SD pin is set to high.                                                                                                      |     |       |
|     |                 | 1: SD pin is set to low.                                                                                                       |     |       |
| 5   | DIS_IR_RX       | 0: Normal operation (Note: RXIR input<br>automatically disabled during transmit but enabled<br>outside of transmit operation.) | R/W | 0     |
|     |                 | 1: Disables RXIR input (permanent state-<br>independent of transmit).                                                          |     |       |
|     |                 | Hence, RX_IR is disabled when either TX is active<br>or ACREG[5] = 1                                                           |     |       |
| 4   | DIS_TX_UNDERRUN | 0: Long stop bits cannot be transmitted, and TX underrun is enabled.                                                           | R/W | 0     |
|     |                 | 1: Long stop bits can be transmitted, and TX underrun is disabled.                                                             |     |       |

| Bit | Name     | Function                                                                                                                                                                                       | R/W | Reset |
|-----|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|
| 3   | SEND_SIP | MIR/FIR modes only                                                                                                                                                                             | R/W | 0     |
|     |          | Send serial infrared interaction pulse (SIP)                                                                                                                                                   |     |       |
|     |          | 0: No action.                                                                                                                                                                                  |     |       |
|     |          | 1: Send SIP pulse.                                                                                                                                                                             |     |       |
|     |          | If this bit is set during a MIR/FIR transmission, the SIP is sent at the end of it.                                                                                                            |     |       |
|     |          | This bit is automatically cleared at the end of the SIP transmission.                                                                                                                          |     |       |
| 2   | SCTX_EN  | Store and controlled TX start                                                                                                                                                                  | R/W | 0     |
|     |          | When MDR1[5] = 1 and the LH writes 1 to this bit,<br>the TX state machine starts frame transmission.<br>This bit is self-clearing.                                                             |     |       |
| 1   | ABORT_EN | Frame abort                                                                                                                                                                                    | R/W | 0     |
|     |          | The LH can intentionally abort transmission of a frame by writing 1 to this bit. Neither the end flag nor the CRC bits are appended to the frame.                                              |     |       |
| 0   | EOT_EN   | EOT (end of transmission) bit                                                                                                                                                                  | R/W | 0     |
|     |          | The LH writes 1 to this bit just before it writes the last byte to the TX FIFO in set-EOT bit frame closing method. This bit is automatically cleared when the LH writes to the THR (TX FIFO). |     |       |

Table 104. Auxiliary Control Register (ACREG) (Continued)

Offset Address (hex): 0x14 x S and read

Table 105. Module Version Register (MVR)

| Bit | Name      | Function                            | R/W | Reset |
|-----|-----------|-------------------------------------|-----|-------|
| 7:4 | MAJOR_REV | Major revision number of the module | R   | 1     |
| 3:0 | MINOR_REV | Minor revision number of the module | R   | -     |

**Note:** UART/IRDA SIR only module is revision 1.x (WMU\_012\_1 specification). UART/IRDA with SIR, MIR, and FIR support is revision 2.x (**this specification**).

Offset Address (hex):0x15 x S

The autoidle bit controls a power-saving technique to reduce the logic power consumption of the OCP interface. That is, when the feature is enabled, the clock is gated off until an OCP command for this device has been detected.

When the software reset bit is set high, it causes a full device reset.

172 Serial Interfaces

| Bit | Name      | Function                                                                                                                          | R/W | Reset |
|-----|-----------|-----------------------------------------------------------------------------------------------------------------------------------|-----|-------|
| 7:5 | -         | Reserved                                                                                                                          | R   | 000   |
| 4:3 | IdleMode  | Power management request/acknowledge control                                                                                      | R/W | 00    |
|     |           | 00: Force idle. An idle request is acknowledged unconditionally.                                                                  |     |       |
|     |           | 01: No idle. An idle request is never acknowledged.                                                                               |     |       |
|     |           | 10: Smart idle. Acknowledgement to an idle request is given based on the internal activity of the module.                         |     |       |
|     |           | 11: Reserved.                                                                                                                     |     |       |
|     |           | Ref: OCP design guidelines version 1.1                                                                                            |     |       |
| 2   | EnaWakeUp | Wake-up feature control                                                                                                           | R/W | 0     |
|     |           | 0: Wake up is disabled.                                                                                                           |     |       |
|     |           | 1: Wake-up capability is enabled.                                                                                                 |     |       |
| 1   | SoftReset | Software reset                                                                                                                    | R/W | 0     |
|     |           | Set this bit to 1 to trigger a module reset. This bit is automatically reset by the hardware. During reads it always returns a 0. |     |       |
|     |           | 0: Normal mode.                                                                                                                   |     |       |
|     |           | 1: The module is reset.                                                                                                           |     |       |
| 0   | Autoldle  | Internal OCP clock gating strategy                                                                                                | R/W | 0     |
|     |           | 0: Clock is running.                                                                                                              |     |       |
|     |           | 1: Automatic OCP clock gating strategy is applied, based on the OCP interface activity.                                           |     |       |

Table 106. System Configuration Register (SYSC)

Offset Address (hex): 0x16 x S

| Table  | 107. | Svstem   | Status | Reaister    | (SYSS)          |
|--------|------|----------|--------|-------------|-----------------|
| 101010 |      | 0,000,00 | 010100 | 1 10 910101 | (0, 0, 0, 0, 0) |

| Bit | Name      | Function                             | R/W | Reset   |
|-----|-----------|--------------------------------------|-----|---------|
| 7:1 | -         | Reserved                             | R   | 0000000 |
| 0   | ResetDone | Internal reset monitoring            | R   | 0       |
|     |           | 0: Internal module reset is ongoing. |     |         |
|     |           | 1: Reset completed.                  |     |         |
|     |           |                                      |     |         |

Offset Address (hex): 0x17 x S

The UART wake-up enable register masks and unmasks a UART event that would subsequently notify the system. Such events are any activity in the logic that can cause an interrupt and/or any that require the system to wake up. Even if the wake-up is disabled for certain events, if these events also interrupt the UART, the UART still registers the interrupt as such.

| Bit | Name                              | Function                                       | R/W | Reset |
|-----|-----------------------------------|------------------------------------------------|-----|-------|
| 7   | -                                 | Reserved                                       | R   | 0     |
| 6   | Event 6                           | 0: Event is not allowed to wake up the system. | W/R | 1     |
|     | Receiver line status<br>interrupt | 1: Event can wake up the system.               |     |       |
| 5   | Event 5                           | 0: Event is not allowed to wake up the system. | W/R | 1     |
|     | RHR interrupt                     | 1: Event can wake up the system.               |     |       |
| 4   | Event 4                           | 0: Event is not allowed to wake up the system. | W/R | 1     |
|     | RX/ RXIR activity                 | 1: Event can wake up the system.               |     |       |
| 3   | Event 3                           | 0: Event is not allowed to wake up the system. | W/R | 1     |
|     | DCD (CD) activity                 | 1: Event can wake up the system.               |     |       |
| 2   | Event 2                           | 0: Event is not allowed to wake up the system. | W/R | 1     |
|     | RI activity                       | 1: Event can wake up the system.               |     |       |
| 1   | Event 1                           | 0: Event is not allowed to wake up the system. | W/R | 1     |
|     | DSR activity                      | 1: Event can wake up the system.               |     |       |
| 0   | Event 0                           | 0: Event is not allowed to wake up the system. | W/R | 1     |
|     | CTS activity                      | 1: Event can wake up the system.               |     |       |

Table 108. Wake-Up Enable Register (WER)

### 6.5 Different Modes of Operation

The UART/IRDA module can operate in six different modes:

- 1) UART 16x mode (≤230.4K bits/s)
- 2) UART 16x mode with autobauding (≥1200 bits/s and ≤115.2K bits/s)
- 3) UART 13x mode (≥460.8K bits/s)
- 4) IrDA SIR mode (≤115.2K bits/s)
- 5) IrDA MIR mode (0.576 and 1.152M bits/s)
- 6) IrDA FIR mode (4M bits/s)

The module performs serial-to-parallel conversion on received data characters, and parallel-to-serial conversion on data characters the processor transmits. The complete status of each channel of the module and each received character/frame can be read at any time during functional operation via the line status register (LSR).

The module can be placed in an alternate mode (FIFO mode), relieving the processor of excessive software overhead by buffering received/transmitted characters. Both the receiver and transmitter FIFOs store up to 64 bytes of data (plus 3 additional bits of error status per byte for the receiver FIFO) and have selectable trigger levels.

Both interrupts and DMA are available to control the data flow between the LH and the module.

### 6.5.1 UART Modes

The UART uses a wired interface for serial communication with a remote device.

The module can use hardware or software flow control to manage transmission/ reception. Hardware flow control uses the RTS output and CTS input signals to automatically control serial data flow. This significantly reduces software overhead and increases system efficiency. Software flow control uses programmable XON/XOFF characters to automatically control data flow.

The UART modem module is enhanced with an autobauding functionality, which, in control mode, allows for automatic setting of the speed, number of bits per character, and parity.

Figure 62. UART Data Format



### 6.5.2 SIR Mode

In slow infrared (SIR) mode, data transfer takes place between the LH and peripheral devices at speeds up to 115200 bauds. A SIR transmit frame begins with start flags (either a single 0xC0, multiple 0xC0, or a single 0xC0 preceded by a number of 0xFF flags), followed by frame data, CRC–16, and ends with a stop flag (0xC1).

BLR[6] is used to select whether 0xC0 or 0xFF start patterns are to be used, when multiple start flags are required.

The SIR transmit state machine attaches start flags, CRC–16, and stop flags. It checks the outgoing data to determine whether data transparency is required.

SIR transparency is carried out if the outgoing data, between the start and stop flags, contains 0xC0, 0xC1, or 0x7D. If one of these is about to be transmitted, the SIR state machine sends an escape character (0x7D) first, then inverts the fifth bit of the real data to be sent, and sends this data immediately after the 0x7D character.

The SIR receive state machine recovers the receive clock, removes the start flags, removes any transparency from the incoming data, and determines frame boundary with reception of the stop flag. It also checks for errors such as frame abort (0x7D character followed immediately by a 0xC1 stop flag, without transparency), CRC error, and frame-length error. At the end of a frame reception, the LH reads the line status register (LSR) to find possible errors in the received frame.

The module can transfer data both ways, but when the device is transmitting, hardware automatically disables the IR RX circuitry. Refer to Table 104, Auxiliary Control Register Bit 5, for a description of the logical operation of all three modes, SIR, MIR, and FIR.

The infrared output in SIR mode can be either 1.6  $\mu$ s or 3/16 encoding, selected by the PULSE\_TYPE bit of the auxiliary control register (ACREG[7]). In 1.6  $\mu$ s encoding, the infrared pulse width is 1.6  $\mu$ s, and in 3/16 encoding the infrared pulse width is 3/16 of a bit duration (1/baud-rate).

The transmitting device must send at least 2 start flags at the start of each frame for back-to-back frames. Reception supports variable-length stop bits.

### Frame Format

Figure 63. IrDA SIR Frame Format



The CRC is applied on the address (A), control (C), and information (I) bytes.

The two words of CRC are written in the FIFO in reception.

#### Asynchronous Transparency

Before transmitting a byte, the UART IrDA controller examines each byte of the payload and the CRC field (between BOF and EOF). For each byte equal to 0xC0 (BOF), 0xC1 (EOF), or 0x7D (control escape), it does the following.

In transmission:

Inserts a control escape (CE) byte preceding the byte.

Complements bit 5 of the byte (that is, exclusive ORs the byte with 0x20).

The byte sent for the CRC computation is the initial byte written in the TX FIFO (before the XOR with 0x20).

In reception:

For the A, C, I, and CRC fields:

- Compares the byte with the CE byte. If not equal, sends it to the CRC detector and stores it in the RX FIFO.
- If equal to CE, discards the CE byte.
- Complements bit 5 of the byte following the CE.
- Sends the complemented byte to the CRC detector and stores it in the RX FIFO.

#### **Abort Sequence**

The transmitter may decide to prematurely close a frame. The transmitter aborts by sending the 0x7DC1 sequence. The abort pattern closes the frame without a CRC field or an ending flag.

It is possible to abort a transmission frame by programming the ABORT\_EN bit of the auxiliary control register (ACREG [1]).

When this bit is set to 1, 0x7D and 0xC1 are transmitted and the frame is not terminated with CRC or stop flags.

The receiver treats a frame as an aborted frame when a 0x7D character followed immediately by a 0xC1 character is received without transparency.

#### **Pulse Shaping**

In SIR mode both the 3/16 and the 1.6 is pulse duration methods are supported. ACREG[7] selects the pulse-width method in transmit mode.

### Encoder

Serial data from the transmit state machine is encoded to transmit data to the optoelectronics. While the serial data input to the (TXD) is high, the output (TXIR) is always low, and the counter used to form a pulse on TXIR is continuously cleared. After TXD resets to 0, TXIR rises on the falling edge of the 7<sup>th</sup> 16XCLK. On the falling edge of the 10<sup>th</sup> 16XCLK pulse, TXIR falls, creating a 3-clock-wide pulse. While TXD stays low, a pulse is transmitted during the 7<sup>th</sup> to the 10<sup>th</sup> clocks of each 16-clock bit cycle.

Figure 64. IrDA Encoder Mechanism



178 Serial Interfaces

#### Decoder

After reset, RXD is high and the 4-bit counter is cleared. When a rising edge is detected on RXIR, RXD falls on the next rising edge of 16XCLK with sufficient setup time. RXD stays low for 16 cycles (16XCLK) and then returns to high as required by the IrDA specification. As long as no pulses (rising edges) are detected on the RXIR, RXD remains high.

Figure 65. IrDA Decoder Mechanism



The reception of RXIR input is disabled with DIS\_IR\_RX bits of the auxiliary control register (ACREG[5]).

#### IR Address Checking

In all IR modes, if address checking has been enabled, only frames intended for the device are written to the RX FIFO. This is to avoid receiving frames not meant for this device in a multi-point infrared environment. It is possible to program two frame addresses that the UART IrDA receives with XON1/ADDR1 and XON2/ADDR2 registers.

Selecting address1 checking is done by setting EFR[0] to 1, and address2 checking is done by setting EFR[1] to 1. Setting EFR[1:0] to 0 disables all address checking operations. If both bits are set, the incoming frame is checked for both private and public addresses.

If address checking is disabled, all received frames are written into the reception FIFO.

### 6.5.3 MIR Mode

In medium infrared (MIR) mode, data transfer takes place between the LH and peripheral devices at 0.576 or 1.152M bits/s speed. A MIR transmit frame begins with start flags (at least 2), followed by a frame data, CRC–16, and ends with a stop flag.

### 6.5.4 MIR Transmit Frame Format

On transmit, the MIR state machine attaches start flags, CRC–16, and stop flags. It also looks for 5 consecutive 1s in the frame data and automatically inserts 0 after them. (This is called bit stuffing.)

Figure 66. MIR Transmit Frame Format

| Start flags Frame data | CRC-16 | Stop flag |
|------------------------|--------|-----------|
|------------------------|--------|-----------|

On receive, the MIR receive state machine recovers the receive clock, removes the start flags, destuffs the incoming data, and determines the frame boundary with reception of the stop flag. It also checks for errors such as frame abort, CRC error, or frame-length error. At the end of a frame reception, the LH reads the line status register (LSR) to discover possible errors in the received frame.

The module transfers data both ways, but when the device is transmitting, hardware automatically disables the IR RX circuitry. Refer to Table 104, Auxiliary Control Register Bit 5, for a description of the logical operation of all three modes, SIR, MIR, and FIR.

### MIR Encoder/Decoder

In order to meet MIR baud-rate tolerance of  $\pm 0.1\%$  with a 48-Mhz clock input, a 42–41–42 encoding/decoding adjustment is performed. The reference start point is 1<sup>st</sup> start flag, and the 42–41–42 cyclic pattern is repeated until the stop flag is sent or detected. The jitter created this way is within MIR tolerances. The pulse width is not exactly 1/4 but within tolerances defined by the IrDA specifications.


Figure 67. MIR Baud-Rate Adjustment Mechanism

## SIP Generation

In MIR and FIR operation modes, the transmitter needs to send a serial infrared interaction pulse (SIP) at least once every 500 ms. The purpose of the SIP is to let slow devices (operating in SIR mode) know that the medium is currently occupied.

The SIP pulse is shown below in Figure 68.

```
Figure 68. SIP Pulse
```



When the SIP\_MODE bit of mode definition register 1 = 1 (MDR1[6]), the TX state machine always sends 1 SIP at the end of a transmission frame. But when MDR1[6] = 0, the transmission of the SIP depends on the SEND\_SIP bit of the auxiliary control register (ACREG[3]). The local host can set ACREG[3] at least once every 500 ms. The advantage of this approach over the default is that the TX state machine does not need to send the SIP at the end of each frame, which may reduce the overhead required.

#### 6.5.5 FIR Mode

In fast infrared mode (FIR), data transfer takes place between the LH and peripheral devices at 4M bits/s. A FIR transmit frame starts with a preamble, followed by a start flag, frame data, CRC–32, and ends with a stop flag.

Figure 69. FIR Transmit Frame Format

| Preamble<br>(16x) | Start flags | Frame data | CRC-16 | Stop flag |
|-------------------|-------------|------------|--------|-----------|
|-------------------|-------------|------------|--------|-----------|

On transmit, the FIR transmit state machine attaches the preamble, start flag, CRC–32, and stop flag. It also encodes the transmit data into 4PPM format and generates the serial infrared interaction pulse (SIP).

On receive, the FIR receive state machine recovers the receive clock, removes the start flag, decodes the 4PPM incoming data, and determines the frame boundary with reception of the stop flag. It also checks for errors such as illegal symbol, CRC error, and frame-length error. At the end of a frame reception, the LH reads the line status register (LSR) to discover possible errors in the received frame.

The module transfers data both ways, but when the device is transmitting, hardware automatically disables the IR RX circuitry. Refer to Table 104, Auxiliary Control Register Bit 5, for a description of the logical operation for all three modes, SIR, MIR, and FIR.

# 6.6 Functional Description

## 6.6.1 Trigger Levels

The UART provides programmable trigger levels for both receiver and transmitter DMA and interrupt generation. After reset, both transmitter and receiver FIFOs are disabled, so in effect the trigger level is the default value of 1 byte. The programmable trigger levels are an enhanced feature available via the trigger level register (TLR).

## 6.6.2 Interrupts

The UART/IrDA module generates interrupts on the UART\_nIRQ output pin. All interrupts are enabled/disabled by writing to the appropriate bit in the interrupt enable register (IER). The interrupt status of the device can be checked at any time by reading the interrupt identification register (IIR).

The UART and IrDA modes have different interrupts in the UART/IrDA module, and therefore different IER and IIR mappings according to the selected mode.

#### **UART Mode Interrupts**

The UART modes have seven possible interrupts. These interrupts are prioritized to six different levels.

When an interrupt is generated, the interrupt identification register (IIR) indicates that an interrupt is pending by bringing IIR[0] to 0, and provides the type of interrupt through IIR[5–1]. It also summarizes the interrupt control functions.

| IIR[5–0] | Priority<br>Level | Interrupt<br>Type                                   | Interrupt<br>Source                                                                  | Interrupt Reset<br>Method                                                                        |
|----------|-------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 000001   | None              | None                                                | None                                                                                 | None                                                                                             |
| 000110   | 1                 | Receiver line status                                | OE, FE, PE, or BI errors occur in characters in the RX FIFO                          | FE,PE,BI: Read RHR. OE:<br>Read LSR                                                              |
| 001100   | 2                 | RX time-out                                         | Stale data in RX FIFO                                                                | Read RHR                                                                                         |
| 000100   | 2                 | RHR interrupt                                       | DRDY (data ready) (FIFO<br>disable)                                                  | Read RHR until interrupt condition disappears                                                    |
|          |                   |                                                     | RX FIFO above trigger level (FIFO enable)                                            |                                                                                                  |
| 000010   | 3                 | THR interrupt                                       | TFE (THR empty)                                                                      | Write to THR until interrupt                                                                     |
|          |                   |                                                     | (FIFO disable)                                                                       | condition disappears.                                                                            |
|          |                   |                                                     | TX FIFO below trigger level (FIFO enable)                                            |                                                                                                  |
| 000000   | 4                 | Modem status                                        | MSR[1:0] / = 0                                                                       | Read MSR                                                                                         |
| 010000   | 5                 | XOFF<br>interrupt/special<br>character<br>interrupt | Receive XOFF<br>characters(s)/special character                                      | Receive XON character(s),<br>if XOFF interrupt/read of<br>IIR, if special character<br>interrupt |
| 100000   | 6                 | CTS,RTS, DSR                                        | RTS pin, CTS pin or DSR pin<br>change state from active (low) to<br>inactive (high). | Read IIR                                                                                         |

Table 109. UART Mode Interrupts

It is important to note that for the receiver line status interrupt, RX\_FIFO\_STS bit (LSR[7]) generates the interrupt.

For the XOFF interrupt, if an XOFF flow character detection caused the interrupt, an XON flow character detection clears the interrupt. If special character detection caused the interrupt, a read of the IIR clears the interrupt.

# IrDA Mode Interrupts

IrDA modes have eight possible interrupts. The UART\_nIRQ output is activated when any of the eight interrupts is generated (there is no priority).

| IIR Bit no. | Interrupt<br>Type              | Interrupt Source                                                            | Interrupt Reset Method                                         |
|-------------|--------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------|
| 0           | RHR interrupt                  | DRDY (data ready)                                                           | Read RHR until interrupt condition                             |
|             |                                | (FIFO disable)                                                              | disappears.                                                    |
|             |                                | RX FIFO above trigger level (FIFO enable)                                   |                                                                |
| 1           | THR interrupt                  | TFE (THR empty)                                                             | Write to THR until interrupt                                   |
|             |                                | (FIFO disable)                                                              | condition disappears.                                          |
|             |                                | TX FIFO below trigger level                                                 |                                                                |
|             |                                | (FIFO enable)                                                               |                                                                |
| 2           | Last byte in RX<br>FIFO        | Last byte of frame in RX FIFO                                               | Read IIR                                                       |
| 3           | RX overrun                     | Write to RHR when RX FIFO full                                              | Read RESUME register                                           |
| 4           | Status FIFO<br>interrupt       | Status FIFO triggers level reached                                          | Read STATUS FIFO                                               |
| 5           | TX status                      | 1. THR empty before EOF sent. Last                                          | 1. Read RESUME register.                                       |
|             |                                | bit of transmission of the IRDA frame                                       | OR                                                             |
|             |                                | error.                                                                      | 2. Read IIR                                                    |
|             |                                | OR                                                                          |                                                                |
|             |                                | 2. Transmission of the last bit of the IRDA frame is finished successfully. |                                                                |
| 6           | Receiver line status interrupt | CRC, ABORT or frame-length error is written into STATUS FIFO                | Read STATUS FIFO<br>[Read until empty—max 8 reads<br>required] |
| 7           | Received EOF                   | Received end-of-frame.                                                      | Read IIR                                                       |

Table 110. IrDA Mode Interrupts

For IIR[5] the interrupt source 1 is used with interrupt reset method 1. The interrupt source 2 is used with interrupt reset method 2.

#### Wake-Up Interrupt

Wake-up interrupt is a special interrupt, not designed the same as the previous ones. It is enabled when the RX\_CTS\_DSR\_WAKE\_UP\_ENABLE bit of the supplementary control register (SCR[4]) is set to 1. The IIR register is not modified when it occurs. SSR[1] must be checked to detect a wake-up event. When wake-up interrupt occurs, the only way to clear it is to reset SCR[4] to 0.

#### 6.6.3 FIFO Interrupt Mode Operation

In FIFO interrupt mode (FIFO control register FCR[0] = 1, relevant interrupts enabled via IER), an interrupt signal (UART\_nIRQ) informs the processor of the receiver and transmitter status. These interrupts are raised when receive/transmit FIFO thresholds (respectively, TLR[7:4] and TLR[3:0], or FCR[7:6] and FCR[5:4]) are reached. The interrupt signals instruct the local host to transfer data to the destination (from the UART module in receive mode and/or from any source to the UART FIFO in transmit mode).

Note that when the UART flow control is enabled along with the interrupt capabilities, the user must ensure that the UART flow control FIFO threshold (TCR[3:0]) is greater than, or equal to, the receive FIFO threshold.

Figure 70 and Figure 71 respectively depict receive and transmit operations.





In receive, no interrupt is generated until receive FIFO reaches its threshold. Once low, the interrupt can only be deasserted when the local host has handled enough bytes to make the FIFO level below threshold. The flow control threshold is set at a higher value than FIFO threshold.



Figure 71. Transmit FIFO IT Request Generation

In transmit mode, an interrupt request is automatically asserted when FIFO is empty. This request is deasserted when the FIFO crosses the threshold level. The interrupt line is deasserted until a sufficient number of elements has been transmitted to go below FIFO threshold.

#### 6.6.4 FIFO Polled Mode Operation

In FIFO polled mode (FCR [0] = 0, relevant interrupts disabled via interrupt enable register (IER)), the status of the receiver and transmitter are checked by polling the line status register (LSR). This mode is an alternative to the FIFO interrupt mode of operation in which the status of the receiver and transmitter is automatically known by means of interrupts sent to the LH.

#### 6.6.5 FIFO DMA Mode Operation

## **DMA Signaling**

The four modes of DMA operation, DMA modes 0/1/2/3, are selected as follows:

When SCR[0] = 0: Setting FCR[3] to 0 enables DMA mode 0.

Setting FCR[3] to 1 enables DMA mode 1.

When SCR[0] = 1: SCR[2:1] determine DMA mode 0 to 3 according to supplementary control register (SCR) description.

For example:

- ☐ If no DMA operation is desired: Set SCR[0] to 1 and SCR[2:1] to 00 (FCR[3] is discarded).
- □ If DMA mode 1 is desired: Either set SCR[0] to 0 and FCR[3] to 1 or set SCR[0] to 1 and SCR[2:1] to 01 (FCR[3] is discarded).

If the FIFOs are disabled (FCR[0] = 0), DMA occurs in single-character transfers.

When DMA mode 0 has been programmed, the signals associated with DMA operation are not active.

## DMA Transfers (DMA Mode 1, 2, or 3)

Figure 72 through Figure 75 show the supported DMA operations.





In receive mode, a DMA request is generated as soon as the receive FIFO reaches its threshold level as defined in the trigger level register (TLR). (See Table 88.) This request is deasserted when the system DMA reads the number of bytes defined by the threshold level.

SPRU760C

In transmit mode, a DMA request is automatically asserted when the FIFO is empty. This request is deasserted when the system DMA writes the number of bytes defined by the number of spaces in the trigger level register (TLR). If an insufficient number of characters is written, the DMA request remains active.

Figure 73. Transmit FIFO DMA Request Generation (56 Spaces)



The DMA request is again asserted if the FIFO is able to receive the number of bytes defined by the TLR register. (See Table 88.)

The threshold can be programmed in a number of ways. See Figure 73 for an example of a DMA transfer that operates with a space setting of 56, which could arise from the use of the autosettings in the FCR[5:4] or the use of the TLR[3:0] concatenated with the FCR[5:4]. The setting of 56 spaces in the UART\_IrDA should correlate with settings of the system DMA so that the buffer does not overflow (program the DMA request size of the local host controller to be equal to the number of spaces value in the UART).

Figure 74 shows another example with 8 spaces, to illustrate the buffer level crossing the space threshold. Again, the local host DMA controller settings must correspond to those of the UART\_IrDA.



Figure 74. Transmit FIFO DMA Request Generation (8 Spaces)

The final example in Figure 75 illustrates the setting of 1 space that uses the DMA for each transfer of 1 character to the transmit buffer. The buffer is filled at a faster rate than the BAUD rate transmits data to the TX pin. Eventually, the buffer is completely full and the DMA operation stops transferring data to the transmit buffer.

The buffer holds the maximum amount of data words on 2 occasions. Shortly after that the DMA is disabled to illustrate the slower transmission of the data words to the TX pin. Eventually, the buffer is emptied at the rate specified by the baud-rate settings of the DLL and DLH registers.

Again, the DMA settings must correspond to the local host DMA controller settings to ensure the correct operation of this logic.





## 6.6.6 Sleep Mode

## **UART Modes**

In UART modes, sleep mode is enabled by writing a 1 to IER[4] (when EFR[4] = 1).

Sleep mode is entered when

- The serial data input line, RX, is idle.
- The TX FIFO and TX shift register are empty.
- □ The RX FIFO is empty.
- There are no interrupts pending except THR interrupts.

Sleep mode is a good way to lower power consumption of the UART, but this state can be achieved only when the UART is set in modem mode. Therefore, even if the UART has no functional key role, it must be initialized in a functional mode to take advantage of sleep mode.

In sleep mode, the module clock and baud rate clock are stopped internally. Because most registers are clocked using these clocks, the power consumption is greatly reduced. The module wakes up when any change is detected on the RX line; if data is written to the TX FIFO, it occurs with any change in the state of the modem input pins. An interrupt is generated on a wake-up event by setting SCR[4] to 1.

#### Note:

Writing to the divisor latches, DLL and DLH, to set the baud clock, BCLK, must not be done during sleep mode. Therefore, it is advisable to disable sleep mode using IER[4] before writing to DLL or DLH.

#### IrDA Modes

In IrDA modes, sleep mode is enabled by writing a 1 to MDR1[3].

Sleep mode is entered when

- The serial data input line, RXIR, is idle.
- The TX FIFO and TX shift register are empty.
- The RX FIFO is empty.
- There are no interrupts pending except THR interrupts.

The module wakes up when any change is detected on the RXIR line, if data is written to the TX FIFO.

#### 6.6.7 Idle Modes

Sleep and autoidle modes are embedded power-saving features. At the system level, power reduction techniques are applied by shutting down certain internal clock and power domains of the device.

The UART supports REQ\_IDLE ACK handshaking protocol. This protocol is used at system level to shut down UART clocks in a clean and controlled manner, and to switch the UART from the interrupt generation mode to a wake-up generation mode for unmasked events (Refer to SYSC[2] and WER.)

For a software programming guide, refer to the OCP Design Guidelines for Idle Mode Control.

## 6.6.8 Break and Time-Out Conditions

#### **Time-Out Counter**

An RX idle condition is detected when the receiver line, RX, has been high for a time equivalent to 4X programmed word length+12 bits. The receiver line is sampled midway through each bit.

For sleep mode, the counter is reset when there is activity on the RX line.

For the timeout interrupt, the counter only counts when there is data in the RX FIFO. The count is reset when there is activity on the RX line or when the RHR is read.

## **Break Condition**

When a break condition occurs, the TX line is pulled low. A break condition is activated by setting LCR[6]. Be aware that the break condition is not aligned on word stream, that is, a break condition can occur in the middle of a character. The only way to send a break condition on a full character is:

- Reset transmit FIFO (if enabled).
- $\Box$  Wait for transmit shift register to become empty (LSR[6] = 1).
- Take a guard time according to stop bit definition.
- Set LCR[6] to 1.

Break condition is asserted as long as LCR[6] is set to 1.

The above functionality (time-out counter and break condition) applies only to the UART modem operation and does not extend to the UART IrDA modes of operation.

#### 6.6.9 Programmable Baud Rate Generator

The UART/IrDA module contains a programmable baud generator and a set of fixed dividers that take the 48-MHz clock input and divide it down to the expected baud rate.

The baud rate generator and associated controls are depicted in Figure 76.

192 Serial Interfaces

UART/SIR/MIR modes only (MODE\_SELECT 16x/13x UART16x or + UART13x) /16 or /13 / [1:(2^14 -1)] CG CG ► TX UART 48-MHz (UART (UART/ SIR/MIR mode) RX UART (16x/13x) Mhz modes) DLH,DLL / 16 (SIR) CG CG ► TX SIR/MIR /41,42 (MIR) (UART (SIR/MIR RX SIR (16x), autobauding modes) mode) RX MIR (41,42x) FIR modes only CG /6 TX FIR (FIR mode) RX FIR (6x) IrDA modes only 1.6/7.1µs SIP (MIR/FIR), /77(1.6µs—ON), CG or ► /341(7.1µs-OFF) 1.6µs pulse (IR (SIR) modes)

#### Figure 76. Baud Rate Generator

#### **Before Modifying Clock Parameters**

It is recommended that MODE\_SELECT = DISABLE (MDR1[2:0] = 111) be set before attempting to initialize or modify clock parameters controls (DLH, DLL). Nonobservance of this rule may result in an unpredictable behavior of the module.

Choosing the appropriate divisor value:

| UART 16x mode: | Divisor value = Operating Freq/(16x baud rate)     |
|----------------|----------------------------------------------------|
| UART 13x mode: | Divisor value = Operating Freq/(13x baud rate)     |
| SIR mode:      | Divisor value = Operating Freq/(16x baud rate)     |
| MIR mode:      | Divisor value = Operating Freq/(41x/42x baud rate) |
| FIR mode:      | Divisor value = none.                              |

Table 111. UART BAUD Rate Settings (48-MHz Clock)

| Baud Rate<br>(b/s) | Baud<br>Multiple | DLH,DLL<br>(Decimal) | DLH,DLL (Hex) | Actual Baud Rate<br>(b/s) | Error (%) |
|--------------------|------------------|----------------------|---------------|---------------------------|-----------|
| 0.3 K              | 16 x             | 10000                | 0x27, 0x10    | 0.3 K                     | 0         |
| 0.6 K              | 16 x             | 5000                 | 0x13, 0x88    | 0.6 K                     | 0         |
| 1.2 K              | 16 x             | 2500                 | 0x09, 0xC4    | 1.2 K                     | 0         |
| 2.4 K              | 16 x             | 1250                 | 0x04, 0xE2    | 2.4 K                     | 0         |
| 4.8 K              | 16 x             | 625                  | 0x02, 0x71    | 4.8 K                     | 0         |
| 9.6 K              | 16 x             | 313                  | 0x01, 0x39    | 9.6153 K                  | +0.16     |
| 14.4 K             | 16x              | 208                  | 0x00, 0xD0    | 14.423 K                  | +0.16     |
| 19.2 K             | 16 x             | 156                  | 0x00, 0x9C    | 19.231 K                  | +0.16     |
| 28.8 K             | 16 x             | 104                  | 0x00, 0x68    | 28.846 K                  | +0.16     |
| 38.4 K             | 16 x             | 78                   | 0x00, 0x4E    | 38.462 K                  | +0.16     |
| 57.6 K             | 16 x             | 52                   | 0x00, 0x34    | 57.692 K                  | +0.16     |
| 115.2 K            | 16 x             | 26                   | 0x00, 0x1A    | 115.38 K                  | +0.16     |
| 230.4 K            | 16 x             | 13                   | 0x00, 0x0D    | 230.77 K                  | +0.16     |
| 460.8 K            | 13 x             | 8                    | 0x00, 0x08    | 461.54 K                  | +0.16     |
| 921.6 K            | 13 x             | 4                    | 0x00, 0x04    | 923.08 M                  | +0.16     |
| 1.8342 M           | 13 x             | 2                    | 0x00, 0x02    | 1.1846 M                  | +0.16     |
| 3.6864 M           | 13 x             | 1                    | 0x00, 0x01    | 3.6923 M                  | +0.16     |

| Baud Rate<br>(b/s) | IR<br>Mode | Baud<br>Multi-<br>ple | En-<br>coding | DLH,<br>DLL | Actual Baud<br>Rate (* = Avg)<br>(b/s) | Error<br>(%) | Source<br>Jitter<br>(%) <sup>1</sup> | Pulse<br>Duration |
|--------------------|------------|-----------------------|---------------|-------------|----------------------------------------|--------------|--------------------------------------|-------------------|
| 2.4 K              | SIR        | 16x                   | 3/16          | 1250        | 2.4 K                                  | 0            | 0                                    | 78.1 μs           |
| 9.6 K              | SIR        | 16x                   | 3/16          | 312         | 9.6153 K                               | +0.16        | 0                                    | 19.5 μs           |
| 19.2 K             | SIR        | 16x                   | 3/16          | 156         | 19.231 K                               | +0.16        | 0                                    | 9.75 μs           |
| 38.4 K             | SIR        | 16x                   | 3/16          | 78          | 38.462 K                               | +0.16        | 0                                    | 4.87 μs           |
| 57.6 K             | SIR        | 16x                   | 3/16          | 52          | 57.692 K                               | +0.16        | 0                                    | 3.25 μs           |
| 115.2 K            | SIR        | 16x                   | 3/16          | 26          | 115.38 K                               | +0.16        | 0                                    | 1.62 μs           |
| 0.576 M            | MIR        | 41x/42<br>x           | 1/4           | 2           | 0.5756 M*                              | 0            | +1.63/<br>_0.80                      | 416 ns            |
| 1.152 M            | MIR        | 41x/42<br>x           | 1/4           | 1           | 1.1511 M*                              | 0            | +1.63/<br>-0.80                      | 208 ns            |
| 4 M                | FIR        | 6x                    | 4 PPM         | -           | 4 M                                    | 0            | 0                                    | 125 ns            |

Table 112. IrDA Baud Rate Settings (48-MHz Clock)

## 6.6.10 Hardware Flow Control

Hardware flow control is composed of auto-CTS and auto-RTS. Auto-CTS and auto-RTS can be enabled/disabled independently by programming EFR[7:6].

With auto-CTS, CTS must be active before the module can transmit data.

Auto-RTS only activates the  $\overline{\text{RTS}}$  output when there is enough room in the FIFO to receive data, and deactivates the  $\overline{\text{RTS}}$  output when the RX FIFO is sufficiently full. The HALT and RESTORE trigger levels in the TCR determine the levels at which  $\overline{\text{RTS}}$  is activated/deactivated.

If both auto-CTS and auto-RTS are enabled, data transmission does not occur unless the receiver FIFO has empty space. Thus, overrun errors are eliminated during hardware flow control. If they are not enabled, overrun errors occur when the transmit data rate exceeds the receive FIFO latency.

#### Auto-RTS

Auto-RTS data flow control originates in the receiver block (see Figure 61, Functional Block Diagram). The receiver FIFO trigger levels used in auto-RTS are stored in the TCR. RTS is active if the RX FIFO level is below the HALT trigger level in TCR[3:0]. When the receiver FIFO HALT trigger level is reached, RTS is deasserted. The sending device (for example, another UART) may send an additional byte after the trigger level is reached because it may not recognize the deassertion of RTS until it has begun sending the additional byte. RTS is automatically reasserted once the receiver FIFO reaches the RESUME trigger level programmed via TCR[7:4]. This reassertion requests the sending device to resume transmission.

#### Auto-CTS

The transmitter circuitry checks  $\overline{\text{CTS}}$  before sending the next data byte. When  $\overline{\text{CTS}}$  is active, the transmitter sends the next byte. To stop the transmitter from sending the following byte,  $\overline{\text{CTS}}$  must be deasserted before the middle of the last stop bit that is currently being sent. The auto-CTS function reduces interrupts to the host system. When auto-CTS flow control is enabled, the  $\overline{\text{CTS}}$  state changes need not trigger host interrupts because the device automatically controls its own transmitter. Without auto-CTS, the transmitter sends any data present in the transmit FIFO and a receiver overrun error can result.

## 6.6.11 Software Flow Control

The enhanced feature register (EFR) and the modem control register (MCR) enable software flow control. Different combinations of software flow control are enabled by setting different combinations of EFR[3:0].

Two other enhanced features relate to software flow control:

XON any function (MCR[5]): The operation will resume after receiving any character, after recognizing the XOFF character.

The XON-any character is written into the RX FIFO even if it is a software flow character.

Special character (EFR[5]): Incoming data is compared to XOFF2. Detection of the special character sets the XOFF interrupt (IIR[4]) but does not halt transmission. A read of the IIR clears the XOFF interrupt. The special character is transferred to the RX FIFO.

#### Receive (RX)

When the software flow control operation is enabled, the UART compares incoming data with XOFF1/2 programmed characters (in certain cases, XOFF1 and XOFF2 must be received sequentially). When the correct XOFF characters are received, transmission is halted after completing transmission of the current character. XOFF detection also sets IIR[4] (if enabled via IER[5]) and causes UART\_nIRQ to go low.

To resume transmission an XON1/2 character must be received (in certain cases XON1 and XON2 must be received sequentially). When the correct XON characters are received, IIR[4] is cleared and the XOFF interrupt disappears.

If a parity, framing, or break error occurs while receiving a software flow control character, the character is treated as normal data and is written to the RX FIFO.

When XON-any and special character detect are disabled and software flow control is enabled, no valid XON or XOFF characters are written to the RX FIFO. For example, in EFR[1:0] = 10, if the XON1 and XOFF1 characters are received they are not written to the RX FIFO.

In the case where pairs of software flow characters are programmed to be received sequentially (EFR[1:0] = 11), the software flow characters are not written to the RX FIFO if they are received sequentially. However, received XON1/XOFF1 characters must be written to the RX FIFO if the subsequent character is not XON2/XOFF2.

## Transmit (TX)

XOFF1: Two characters are transmitted when the RX FIFO passes the programmed trigger level TCR[3:0].

XON1: Two characters are transmitted when the RX FIFO reaches the programmed trigger level via TCR[7:4].

If an XOFF character has been sent, software flow control is disabled and the module transmits XON characters automatically to enable normal transmission to proceed. The transmission of XOFF/XON (s) follows the same protocol as transmission of an ordinary byte from the FIFO. This means that even if the word length is set to be 5, 6, or 7 characters, then the 5, 6, or 7 least-significant bits of XOFF1,2/XON1,2 are transmitted. Note that the transmission of 5, 6, or 7 bits of a character is seldom done, but this functionality is included to maintain compatibility with earlier designs.

UARTs

It is assumed that software flow control and hardware flow control will never be enabled simultaneously.

## 6.6.12 Autobauding Mode

In autobaud mode, UART extracts transfer characteristics (speed, length and parity) from an AT command. These characteristics are used to receive data following an *at* and to send data.

Here are valid AT commands:

| AT | DATA | <cr></cr> |
|----|------|-----------|
| AT | DATA | <cr></cr> |
| A/ |      |           |
| а  |      |           |

The line break during the acquisition of the sequence AT is not recognized and echo functionality is not implemented in hardware.

A/and a/are not used to extract characteristics, but they have to be recognized because of their special meaning. They are used to instruct the software to repeat the last received AT command. Therefore, an a/always comes after an AT, and transfer characteristics are not expected to change between an AT and an a/.

As soon as a valid *at* (AT) is received, it and all subsequent data are saved into FIFO, including final <CR> (0x0D). Then, the autobaud state machine waits for the next valid AT command. If an a/(AI) is received, it is saved into FIFO and the state machine waits for next valid AT command.

Upon the first successful detection of the baud rate, the UART activates an interrupt to signify that the AT(upper- or lowercase) sequence has been detected. The UASR register reflects the correct settings for the baud rate that has been detected. The interrupt activity continues in this fashion each time a subsequent character is received. Therefore, it is recommended that the software enable the RHR interrupt when using the autobaud mode.

The following settings are detected in autobaud mode with a module clock of 48 MHz:

- Speed:115.2K bauds, 57.6K bauds, 38.4K bauds, 28.8K bauds, 19.2K bauds, 14.4K bauds, 9.6K bauds, 4.8K bauds, 2.4K bauds, or 1.2K bauds
- Length: 7 or 8 bits
- Parity: Odd, even, or space

#### Note:

The combination of 7-bit character + space parity is not supported.

The method used to identify the speed is:

- Detect the transition 1 → 0 on the received data. This happens as soon as a stop-to-start bit transition occurs. The transition is valid after a majority vote on 3 sampling periods.
- 2) Sample the start bit duration with 115 200 \*16-Hz clock frequency as long as there is no rising edge. A transition  $0 \rightarrow 1$  is considered as valid after a majority vote on 3 sampling periods.
- Compare the sampled value with a table. If the sampled value is outside a valid range, an error is reported (no speed identified) and the hardware goes back to the first state (1).
- 4) Else store the first data bit in the received register (for serial to parallel conversion) and go to frame format identification.

The next received bits are sampled according to the programmed baud rate. However, after 7 bits reception, the speed identification must be restarted because several a or A characters may have been received before a valid t or T character.

The autobauding mode is selected when MDR1[2:0] = 010. In the UART autobauding mode, DLL, DLH, and LCR[5:0] settings are not used. Instead, UASR is updated with the configuration detected by the autobauding logic.



## Figure 77. Autobaud State Machine

## 6.6.13 Frame Closing

A transmission frame is properly terminated in one of two ways:

- Frame-length method: The frame-length method is selected when MDR1[7]
  = 0. The local host writes the frame-length value to the TXFLH and TXFLL registers. The device automatically attaches end flags to the frame once the number of bytes transmitted becomes equal to the frame-length value.
- Set-EOT bit method: The Set-EOT bit method is selected when MDR1[7]
  = 1. The local host writes 1 to ACREG[0] (EOT bit) just before it writes the last byte to the TX FIFO. When the local host writes the last byte to the TX FIFO, the device internally sets the tag bit for that particular character in the TX FIFO. As the TX state machine reads data from the TX FIFO, it uses this tag-bit information to attach end flags and properly terminate the frame.

## 6.6.14 Store and Controlled Transmission (SCT)

In SCT the local host first starts writing data into the TX FIFO. Then, after it writes a part of a frame for a bigger frame, or a whole frame (a small frame, that is, a supervisory frame), it writes a 1 to ACREG[2] (deferred TX start) to start transmission. SCT is enabled when MDR1[5] = 1. This method of transmission differs from the normal mode, where transmission of data starts immediately after data is written to the TX FIFO. SCT is useful for sending short frames without TX underrun.

#### 6.6.15 Underrun During Transmission

Underrun in transmission occurs when the TX FIFO becomes empty before the end of the frame is transmitted. When underrun occurs, the device closes the frame with end flags but attaches an incorrect CRC value. The receiving device detects a CRC error and discards the frame; it can then ask for a retransmission. Underrun also causes an internal flag to be set, which disables further transmission. Before the next frame can be transmitted the system (LH) must:

- Reset the TX FIFO.
- Read the RESUME register. This clears the internal flag.

This functionality is disabled with ACREG[4], compensated by the extension of the stop bit in transmission in case the TX FIFO is empty.

#### 6.6.16 Overrun During Receive

Overrun occurs during receive if the RX state machine tries to write data into the RX FIFO when it is already full. When overrun occurs, the device interrupts the local host with IIR[3] and discards the remaining portion of the frame. Overrun also causes an internal flag to be set, which disables further reception. Before the next frame can be received the system (LH) must:

- Reset the RX FIFO.
- Read the RESUME register. This clears the internal flag.

#### 6.6.17 Status FIFO

In IrDA modes, a status FIFO is used to record the received frame status. When a complete frame is received, the length of the frame and the error bits associated with it are written into the status FIFO.

The frame length and error status can be determined by reading SFREGL/H and SFLSR. Reading the SFLSR causes the read pointer to be incremented. The status FIFO is eight entries deep and therefore can hold the status of eight frames.

The LH uses the frame-length information to locate the frame-boundary in the received frame data. The LH screens bad frames using the error-status information and later requests the sender to resend only the bad frames.

This status FIFO is used effectively in DMA, as the LH need not be interrupted each time a frame is received but only when the programmed status FIFO trigger level is reached.

# 6.7 UART Configuration Example

This section outlines the programming stages for operating one UART module with FIFO, interrupt, and no DMA capabilities. This is a three-step procedure that ensures a quick start of these modules (obviously, it does not cover every UART module feature). The first stage covers the software reset of the module (interrupts, status, and controls). The second stage deals with FIFO configuration and enable. The last stage with deals with the baud rate data and stop configuration. The procedure below is programming language agnostic.

## 6.7.1 UART Software Reset

Goal:

To clear IER and MCR registers, remove UART breaks (LCR[6] = 0) and put module in reset (MDR1[2:0] = 0x07).

Procedure:

To write into both the IER and MCR register EFR[4] must first be set to 1.

To be able to access the EFR register, 0xBF must be first be written to LCR register. Hence,

- 1) LCR = 0xBF; First write to the LCR register.
- 2) EFR[4] = 1; When LCR = 0xBF, enable the enhanced feature register.
- 3) LCR[7] = 0; Here, access to IER and MCR is allowed.
- 4) IER = 0x00; Disable interrupt.
- 5) MCR = 0x00; Force control signals inactive.
- 6) LCR[6] = 0; Here, remove UART breaks.
- 7) MDR1 = 0x07; Here, UART is in reset or disabled.

Alternatively, the SYSC[1] can be set to one to instigate a hardware reset from the generic synchronous reset module. The reset progress can be monitored via the SYSS[0]. Once complete, the above sequence should ensure that the UART is in the equivalent disabled mode with reference to MDR1[2:0].

#### 6.7.2 UART FIFO Configuration

Goal:

To set trigger level for halt/restore (TCR register), set trigger level for transmit/receive (TLR register), and configure FIFO (FCR register).

Procedure:

To write into both the TLR and TCR registers, EFR[4] must be set to 1 and MCR[6] to 1. To write into FCR, EFR[4] must be set to 1. Note that EFR[4] = 1 was already done in the previous section. Therefore, a simple write to MCR[6] is necessary.

MCR[6] = 1; Sets TCR TLR and FCR to the desired value.

Here accesses to TCR, TLR, and FCR must be disabled to avoid any further undesired write to these registers. Hence,

- □ LCR = 0xBF; Provides access to EFR
- □ EFR[4] = 0
- □ LCR[7] = 0
- □ MCR[6] = 0

## 6.7.3 Baud Rate Data and Stop Configuration

Goal:

To configure UART data, stop (LCR register) baud rate (DLH and DLL registers), and enable UART operation. In case interrupt capability is added, configuration must be added right before UART enable.

Procedure:

Set LCR to desired value.

LCR[7] to 1; Gives access to DLH and DLL registers

Set DLH and DLL;

LCR[7] = 0; Removes access to DLH and DLL registers

Set IER to desired value. Sets interrupts.

MDR1[2:0] = 0; Enables UART without autobauding

The UART module is operational.

# 7 HDQ and 1-Wire Protocols

This module implements the hardware protocol of the master function of the HDQ<sup>™</sup> and the 1-Wire<sup>™</sup> protocol.

This module works off a command structure that is programmed into transmit command registers. The received data is in the receive data register. The firmware is responsible for performing correct sequencing in the command registers. The module only implements the hardware interface layer of the protocols.

The HDQ and the 1-Wire modes are selectable in software and must be chosen before any transmit and receive from the module is performed. The mode is assumed static during operation of the device. The 1-Wire and the HDQ protocols both use HDQ timing.

# 7.1 Functional Description

The module works with both HDQ and the 1-Wire protocols. The protocols use a single wire to communicate between the master and the slave. The protocols employ a return-to-1 mechanism, where after any command, the line is pulled up to a high. This requires an external pullup.

An open-drain configuration is used on the wire. The DX is connected to the GZ pin of an external 3-state output driver, and the input pin is connected to a zero level.

A control bit determines whether the HDQ or the 1-Wire protocol is to be used. Although this bit can be modified at any point, it is recommended that it be modified only as part of boot-up configuration. For the design, the bit is assumed static. By default, the configuration complies with the HDQ spec.

## 7.1.1 Receive and Transmit Operation

The receive and transmit operations are performed according to the timing specified in the HDQ protocol. This is done to keep the hardware interface section compatible between the two devices. In essence, the 1-Wire mode runs at slower speeds than the capabilities of the mode. The differences between the protocol at the hardware layer are described in the following subsections.

## 7.1.2 HDQ Mode (Default)

In HDQ mode, the firmware does not require the host to create an initialization pulse to the slave. However, the slave can be reset using an initialization pulse (also referred to as a break pulse). The pulse is created by setting the appropriate bit in the control and status register. The slave does not respond with a presence pulse, as it does in the 1-Wire protocol.

In a typical write to the slave, 2 bytes of data are sent to the slave. This is the command/address byte followed by the data that must be written. In a typical read, 1 command/address byte is sent to the slave, and the slave returns 1 byte of data.

The master implementation is a byte engine. The firmware is responsible for sending the ID, command/address, and data. The master engine provides only one data TX register.

HDQ is a return-to-1 protocol. This means that after a data byte (either command/address + write data for writes, or just command/address for reads) is sent to the slave, the host pulls the line high. This is accomplished in the device by setting the line to high (with an external pullup). The slave pulls the line low to initiate a transaction. This is the case when a read occurs, and the slave must send the read data back to the host.

If the host initiates a read and data is not received in a specified interval (the slave does not pull the line low within this time), a time-out status bit is set. This indicates that a read was not successfully completed. On successful completion, the time-out bit is cleared. The bit remains set or cleared until the next transaction by the host.

An interrupt condition indicates either a TX complete, RX complete, or time-out condition. The read of the interrupt status register clears all of the interrupt conditions. Only one interrupt signal is sent to the microcontroller, and only an overall mask bit exists for the enabling and disabling of the interrupt. The interrupt conditions cannot be individually masked.

The programmer must perform the following sequence for the reads and writes to the slave:

Write operation:

- 1) Write the command or data value to the TX write register.
- 2) Write 0 to the R/W bit of the control and status register to indicate a write.
- 3) Write 1 to the go bit of the control and status register to start the actual transmit. This step and the above step can be done at the same time.

- The hardware sends the byte from the TX data register.
- The time-out bit is always cleared in a write, because the hardware has no acknowledge mechanism from the slave.
- The completion of the operation sets the TX complete flag in the interrupt status register. If interrupts are masked, no interrupt is generated. The interrupt status register is always cleared at the beginning of any read or write operation.
- At the end of the write, the go bit is cleared.
- 4) Software must read the interrupt status register to clear the interrupt.
- 5) Repeat for each successive byte.

Read operation:

- 1) Write the command value to the TX write register.
- 2) Write 0 to R/W bit, 1 to the go bit, and wait for TX complete interrupt.
- 3) Write 1 to the R/W bit of the control and status register to indicate a read.
- 4) Write 1 to the go bit of the control and status register to start the actual read. This step and the above step can be done at the same time.
  - The hardware detects a low-going edge of the line (created by the slave) and receives 8 bits of data in the RX receive buffer register. The first bit that is received from the slave is the LSB and the last bit is the MSB of the byte. The master performs this step as soon as the slave sends the data, irrespective of the state of the go bit. However, an RX complete interrupt is generated only when the software writes the go bit.
  - If a time-out occurs, a time-out bit is set in the control and status register.
  - The completion of the operation sets the RX complete flag in the interrupt status register. If interrupts are masked, no interrupt is generated. The interrupt status register is always cleared at the beginning of either a read or a write operation.
  - At the end of the read, the go bit is cleared. It is also cleared if a time-out is detected.
- 5) Software must read the interrupt status register to determine whether RX was complete or whether a time-out occurred.
- Software does a read of the RX buffer register to retrieve the read data from slave.

7) Repeat for each successive byte.

In HDQ16 mode, the address/command is only written once to the slave. However, after the first byte is received, if an RX complete interrupt is received, the software must initiate the read of the second byte by writing the go bit of the control and status register. The first byte that was received is shadowed and provided to the software while the hardware is fetching the second byte of data.

## 7.2 1-Wire Mode (SDQ)

This section highlights the primary differences between the HDQ and the 1-Wire protocols.

In the 1-Wire mode, the firmware must send an initialization pulse to the multiple slaves that can be connected on the interface. If any slave is present, the slave responds with a presence pulse.

The initialization pulse is sent by setting the appropriate bit in the control and status register. A presence detect is indicated in the appropriate bit of the register. If no presence is received, a time-out bit is set in the status register. The initialization bit is cleared at the end of the initialization pulse. Also, the presence detect and the time-out bits are cleared at the end of the initialization pulse, if a presence detect is received. The time-out bit has no other significance in this mode; that is, unlike in HDQ mode, it is always cleared during a read operation.

1-Wire mode is a bit-by-bit protocol for a read. Unlike HDQ, which sends eight bits of data on a read, the slave must be clocked by the host in 1-Wire protocol for each bit. At the end of the command/address byte, the line is pulled high and the host creates a low-going edge to initiate a bit read from the slave. The host then pulls the line high, and the slave either pulls the line low to indicate a 0 or does not drive the line to indicate a 1. The host repeats the operation for the next bit that need to be read.

The first bit that is received is the LSB and the last bit is the MSB in the RX data register.

An interrupt condition indicates either a TX complete, RX complete, or time-out condition. The read of the interrupt status register clears all of the interrupt conditions. Only one interrupt signal is sent to the microcontroller, and only an overall mask bit exists for the enabling and disabling of the interrupt. The interrupt conditions cannot be individually masked.

The programmer must perform the following sequence for the reads and writes to the slave:

Write operation:

- 1) Write the ID, command, or data value to the TX write register.
- 2) Write 0 to the R/W bit of the control and status register to indicate a write.
- 3) Write 1 to the go bit of the control and status register to start the actual transmit. This step and the above step can be done at the same time.
  - The hardware sends the one byte of the TX write data register.
  - The time-out bit is always cleared in a write.
  - The completion of the operation sets the TX complete flag in the interrupt status register. If interrupts are masked, no interrupt is generated. The interrupt status register is always cleared at the beginning of any read or write operation.
  - At the end of the write, the go bit is cleared.
- If interrupt is enabled, software must read the interrupt status register to clear the interrupt.
- 5) Repeat for each successive byte.

Read operation:

- 1) Write the ID value to the TX write register.
- 2) Write 0 to R/W bit and 1 to the go bit and wait for TX complete interrupt.
- 3) Write the command value to the TX write register.
- 4) Write 0 to R/W bit and 1 to the GO bit and wait for TX complete interrupt.
- 5) Write 1 to the R/W bit of the control and status register to indicate a read.
- 6) Write 1 to the go bit of the control and status register to start the actual read. This step and the above step can be done at the same time.
  - The hardware creates a low-going edge of the line (created by the slave), and clocks 8 bits of data into the RX receive buffer register. The first bit that is received from the slave is the LSB and the last bit is the MSB of the byte.
  - The time-out bit is always cleared in a read.
  - The completion of the operation sets the RX complete flag in the interrupt status register. If interrupts are masked, no interrupt is generated. The interrupt status register is always cleared at the beginning of any read or write operation.

- At the end of the read, the go bit is cleared. It is also cleared if a time-out is detected.
- 7) If interrupt is enabled, software must read the interrupt status register to determine if RX was completed or whether there was a time-out.
- 8) Software does a read of the RX buffer register to retrieve the read data from the slave.
- 9) Repeat for each successive byte.

# 7.3 1-Wire Bit Mode Operation

A single-bit mode can be entered by writing to the appropriate bit in the control and status register. In this mode, only one bit of data is received each time from the slave. After the bit is received, an RX complete interrupt is generated. Bit 0 of the receive buffer is updated each time a bit is received.

The mode has no effect in HDQ mode, as HDQ does not support single-bit protocol.

## 7.3.1 Timing Diagrams

Figure 78 shows the timing diagram for the read, reset, and write. In the HDQ, the reset pulse contains only the initialization and not the presence pulse. The timing required for the various signals are specified in *Single-Wire Advanced Battery Monitor IC for Cellular and PDA Applications* (SLUS480).

The master works at the timing of the HDQ interface, which encompasses the HDQ and the 1-Wire timing. Therefore, in 1-Wire mode, the master runs slower than the full performance capability of the protocol.

#### HDQ and 1-Wire Protocols

# Figure 78. Read Timing Diagram

Must be driven low by host for DS, driven low by slave on HDQ



# Figure 79. Reset Timing Diagram



# Figure 80. Write Timing Diagram



# 7.3.2 Write State Diagram

Figure 81. Write State Machine #1



# 7.3.3 Read State Diagram





SPRU760C

Serial Interfaces 211

## 7.3.4 Status Flags

The status register contains status flags from the transmitter, the receiver, and the presence detect logic.

The presence-condition-detected status flag is contained in the status register. This is valid only in 1-Wire mode. It is cleared when the host sends an initialization pulse and then is set to 1 if a pulse is received. Otherwise, it stays cleared at 0.

#### 7.3.5 Interrupts

The module provides the following interrupt status:

Transmitter complete

A write of one byte was completed. Successful or unsuccessful completion is not indicated, because there is no acknowledge from the slave in either HDQ or 1-Wire mode. Cleared at beginning of write command.

Read complete

Indicates successful completion of a byte read in both modes. Cleared at beginning of read command.

- Presence detect/time-out
  - In 1-Wire mode, it indicates that it is now valid to check the presence detect received bit. Cleared at beginning of initialization sequence.
  - In HDQ mode, it indicates that after a read command was issued by the host, the slave did not pull the line low within the specified time. In HDQ mode, the bit is cleared at beginning of the read command.

Only one interrupt is generated to the microcontroller, based on any of the above interrupt status conditions. A read to the interrupt status register clears all of the status bits that have been set.

The interrupt can be masked by setting the appropriate bit in the control and status register.

A read of the interrupt status register clears the interrupt. If there is a pending interrupt, the interrupt line stays low and no low-high-low transition is created. The interrupt therefore must be handled as a level interrupt (where a low-going edge is not needed) in an upstream interrupt handler (or processor).

# 7.4 Power-Down Mode

Writing to the appropriate bit in the control and status register shuts the clock to the state machine. The state machines are reset when the clock is disabled, and if any transaction is being performed, it is aborted into the reset state. The register values are not affected by disabling the clock. No register access must be performed to the module registers after the software puts the module in power-down mode by setting bit 5 of the control and status register to 0, other than a write to the power-down bit to take it out of power-down mode.

# 7.5 HDQ and 1-Wire Battery Monitoring Serial Interface

The HDQ and 1-Wire battery monitoring serial interface module implements the hardware protocol of the master function of the Benchmarq HDQ and the Dallas Semiconductor 1-Wire<sup>™</sup> protocol. The module works off a command structure that is programmed into transmit command registers. The received data is in the received data register. The firmware is responsible for correct sequencing in the command registers. The module implements only the hardware interface layer of the protocols.

The HDQ and the 1-Wire mode are selectable in software, which must be done before any transmit and receive from the module is performed. The mode is assumed static during operation of the device.

Figure 83. HDQ and 1-Wire Overview



## 7.6 Software Interface

Mapping the registers to the TI peripheral bus (TIPB) address signals is shown in Table 113. The memory map identifies the 2K space associated with the peripheral.

The hardware provides no synchronization between the register clock domain and the state machine domain. This means that during a read, the hardware has the capability to modify the receive buffer. It is also possible that any access to the transmit write data register corrupts the data that is being sent if a TX is being performed.

However, these hazards can be avoided in software by observing the following limitations:

- A read is not performed from the interrupt status register or receive buffer register unless the processor has been interrupted by the peripheral.
- ☐ After the release of the go bit in the control and status register, no access to the TX write data buffer or the control and status registers is performed until the processor has been interrupted by the peripheral.
- Software is not allowed to poll the interrupt status register to determine whether an interrupt was generated.
- No register access can be done to the module registers after the software puts the module in power-down mode (by setting bit 5 of the control and status register to 0), except to reenable the clock.

|            | Base Address = 0xFFFB C000      |      |           |  |  |
|------------|---------------------------------|------|-----------|--|--|
| Register   | Description                     | Туре | Address   |  |  |
| HDQ1W_TX   | TX write data                   | R/W  | FFFB:C000 |  |  |
| HDQ1W_RX   | RX receive buffer               | R    | FFFB:C004 |  |  |
| HDQ1W_CTRL | Control and status              | R/W  | FFFB:C008 |  |  |
| HDQ1W_INTS | Interrupt status, read to clear | R    | FFFB:C00C |  |  |

Table 113. HDQ and 1-Wire Registers

| Table 114. HDQ/1–Wire T | TX Write Data Register | (HDQ1W_TX) |
|-------------------------|------------------------|------------|
|-------------------------|------------------------|------------|

|       |          | Base Address = 0xFFFB C000, Offset Address = 0x00  |     |       |
|-------|----------|----------------------------------------------------|-----|-------|
| Bit   | Name     | Function                                           | R/W | Reset |
| 31:24 | Reserved | Reserved – read aliased to bit 7:0, writes ignored | R/W | 0x00  |
| 23:16 | Reserved | Reserved – read aliased to bit 7:0, writes ignored | R/W | 0x00  |
| 15:8  | Reserved | Reserved – read aliased to bit 7:0, writes ignored | R/W | 0x00  |
| 7:0   | WD       | Write data (used in both HDQ and 1–Wire modes)     | R/W | 0x00  |

Table 115. HDQ/1–Wire RX Receive Buffer Register (HDQ1W\_RX)

|       |          | Base Address = 0xFFFB C000, Offset Address = 0x04  |     |       |
|-------|----------|----------------------------------------------------|-----|-------|
| Bit   | Name     | Function                                           | R/W | Reset |
| 31:24 | Reserved | Reserved – read aliased to bit 7:0, writes ignored | R   | U     |
| 23:16 | Reserved | Reserved – read aliased to bit 7:0, writes ignored | R   | U     |
| 15:8  | Reserved | Reserved – read aliased to bit 7:0, writes ignored | R   | U     |
| 7:0   | RD       | Next received character                            | R   | U     |

# Table 116. HDQ/1–Wire Control Register (HDQ1W\_CTRL)

|       | Base Address = 0xFFFB C000, Offset Address = 0x08 |                                                                                              |     |       |  |
|-------|---------------------------------------------------|----------------------------------------------------------------------------------------------|-----|-------|--|
| Bit   | Name                                              | Function                                                                                     | R/W | Reset |  |
| 31:24 | Reserved                                          | Reserved – read aliased to bit 7:0, writes ignored                                           | R/W | 0x00  |  |
| 23:16 | Reserved                                          | Reserved – read aliased to bit 7:0, writes ignored                                           | R/W | 0x00  |  |
| 15:8  | Reserved                                          | Reserved – read aliased to bit 7:0, writes ignored                                           | R/W | 0x00  |  |
| 7     | SBM                                               | Single-bit mode for 1-Wire                                                                   | R/W | 0     |  |
| 6     | IM                                                | Interrupt mask (1: Enable, 0: Disable interrupts)                                            | R/W | 0     |  |
| 5     | PDM                                               | Power-down mode (1: Enable clocks, 0: Disable clocks)                                        | R/W | 0     |  |
| 4     | GB                                                | Go bit                                                                                       | R/W | 0     |  |
|       |                                                   | Write 1 to send the appropriate commands.<br>Bit returns to 0 after the command is complete. |     |       |  |

#### HDQ and 1-Wire Protocols

| Table 116. | HDQ/1-Wire | Control | Register | (HDQ1W | CTRL) | (Continued) |
|------------|------------|---------|----------|--------|-------|-------------|
|            |            |         |          | · · _  | - /   |             |

| Base Address = 0xFFFB C000, Offset Address = 0x08 |      |                                                                             |     |       |  |  |  |
|---------------------------------------------------|------|-----------------------------------------------------------------------------|-----|-------|--|--|--|
| Bit                                               | Name | Function                                                                    | R/W | Reset |  |  |  |
| 3                                                 | PD   | Presence detect received, 1-Wire mode only.                                 | R   | 0     |  |  |  |
|                                                   |      | 0: Not detected.<br>1: Detected.                                            |     |       |  |  |  |
| 2                                                 | IP   | Write 1 to send Initialization pulse. Bit returns to 0 after pulse is sent. | R/W | 0     |  |  |  |
| 1                                                 | RWB  | R/W bit (determines if next command is read or write)                       | R/W | 0     |  |  |  |
|                                                   |      | 0: Write.<br>1: Read.                                                       |     |       |  |  |  |
| 0                                                 | MODE | Set mode                                                                    | R/W | 0     |  |  |  |
| _                                                 |      | 0: HDQ.<br>1: 1-Wire.                                                       |     |       |  |  |  |

Table 117. HDQ/1–Wire Interrupt Status Register (HDQ1W\_INTS)

| Base Address = 0xFFFB C000, Offset Address = 0x0C |          |                                                                                                                          |     |       |  |  |  |  |
|---------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------|-----|-------|--|--|--|--|
| Bit                                               | Name     | Function                                                                                                                 | R/W | Reset |  |  |  |  |
| 31:24                                             | Reserved | Reserved – read aliased to bit 7:0, writes ignored                                                                       | R   | 0x00  |  |  |  |  |
| 23:16                                             | Reserved | Reserved – read aliased to bit 7:0, writes ignored                                                                       | R   | 0x00  |  |  |  |  |
| 15:8                                              | Reserved | Reserved – read aliased to bit 7:0, writes ignored                                                                       | R   | 0x00  |  |  |  |  |
| 7:3                                               | Reserved | Reserved – reads 0, writes ignored                                                                                       | R   | 0x0   |  |  |  |  |
| 2                                                 | тс       | TX completed                                                                                                             | R/C | 0     |  |  |  |  |
| 1                                                 | RC       | Read complete                                                                                                            | R/C | 0     |  |  |  |  |
| 0                                                 | DTO      | Presence detect/time-out: In 1-Wire mode this is due to presence detect, and in HDQ mode this is due to time-out on read | R/C | 0     |  |  |  |  |

**Note:** R/C – read clears bit
### 8 Frame Adjustment Counter

The frame adjustment counter counts the number of rising edges of one signal (start of frame interrupt of the USB function) during a programmable number of rising edges of a second signal (transit frame synchronization of McBSP2). System-level software uses this count value to adjust the duration of the two time domains with respect to each other to reduce overflow and underflow. If the data being transferred is audio data, this module can be part of a solution that reduces pops and clicks.

#### 8.1 Features

The frame adjustment counter (FAC) is a module that consists of a frame-synchronization capture pin and a frame-start capture pin. System-level software uses the respective count values to adjust the duration of the two time domains with respect to each other to reduce the overflow and underflow.

A frame-adjustment reference count (FARC) register is programmed with the number of frame-synchronization pulses over which the frame-start pulses are to be counted. A frame-start count (FSC) register is updated with the number of frame-start rising edges that occur during the programmable FARC period. A control and configuration (CTRL) register allows for the module to be put into either continuous or halt mode. In continuous mode, the FSC register is periodically updated with a new value each time the FARC register value is met, and a new count is automatically initiated. In halt mode, the FSC register is updated with a new value when the FARC register value is met, counting halts, and an interrupt is generated. In halt mode, a new count is initiated upon software servicing the interrupt by reading the FSC register. The RUN bit in the control and configuration register can enable and disable the counters. If the RUN bit is set to 0, the counters are reset immediately, even though the count is not finished. The software can use this bit as a software reset. Additionally, a status register (STATUS) containing a FSC FULL bit indicates to the system software whether FSC has been read subsequent to the last FSC update.



#### Figure 84. FAC Top-Level Diagram

The main FAC features are:

- Frame-synchronization capture pin (SYNC)
- Frame-start capture pin (START)
- Programmable frame-adjustment reference count register (FARC)
- Read-only frame-start count register (FSC)
- Interrupt generation logic
- Configuration and control register (CTRL)
- □ Status register (STATUS)

### 8.2 Synchronization and Counter Control

Because the frame-start and frame-synchronization signals are from different time domains, the FAC module synchronizes them to the system clock domain and uses the synchronized signals as the count enables. The actual counters for frame synchronization and frame start are clocked by the system clock.

218 Serial Interfaces

### 8.2.1 Synchronization

The synchronization mechanism is based on the assumption that the system clock is running at least eight times faster than frame synchronization and frame start. Figure 85 and Figure 86 show the synchronization logic and the counter hookup.

Figure 85. FAC Module Counters and Clock Synchronization





#### Figure 86. Synchronization Circuit for Frame Synchronization and Frame Start Signals

Figure 87 shows the actual waveforms at the output of each flip-flop and the XOR output.



Figure 87. Synchronization Circuit Waveforms

### 8.3 FAC Interrupt

The FAC generates one interrupt, FAC\_IRQ (in halt mode when the FARC value is met), connected to the MPU level 2 interrupt handler, line 0 (level-sensitive).

### 8.4 FAC Clocks and Reset

The FAC works with a clock (PCLK) provided by the ULPD from a request generated by the USB function (DS\_WAKE\_REQ\_ON).

The DS\_WAKE\_REQ\_ON request does not wake up the system itself.

The ULPD module uses this request to generate an interrupt (ULPD\_nIrq) to the MPU, which wakes up the system via its wake-up request (WKUP\_REQ).

Once the system is awakened (12 MHz provided to the MPU), the MPU programmable peripheral clock (PERCLK) is used as the source clock for the FAC clock.

The MPU TIPB reset (MPU\_PER\_RST) resets the FAC.

#### 8.5 Software Interface

Table 118 lists the FAC registers. Table 119 through Table 122 describe the register bits.

| Register  | Description                      | Туре | Address   |
|-----------|----------------------------------|------|-----------|
| FARC      | Frame adjustment reference count | R/W  | FFFB:A800 |
| FSC       | Frame start count                | R    | FFFB:A804 |
| CTRL      | Control and configuration        | R/W  | FFFB:A808 |
| STATUS    | Status                           | R    | FFFB:A80C |
| SYNC CNT  | Frame synchronization counter    | R    | FFFB:A810 |
| START CNT | Frame start counter              | R    | FFFB:A814 |

#### Table 118. FAC Registers

The FAC module is a word16 module with 32-bit aligned addresses.

The frame-adjustment counter register (FARC) is programmed with the number of frame synchronization counts over which the frame start pulses are counted. This is a 16-bit programmable fixed reference in the range of 0-65536. A value of 0 disables the count operation.

#### Table 119. Frame Adjustment Reference Count Register (FARC)

|      |      | Base Address = 0xFFFB A800, Offset Address = 0x00     |     |        |
|------|------|-------------------------------------------------------|-----|--------|
| Bit  | Name | Function                                              | R/W | Reset  |
| 15:0 | FARC | 16-bit value in the range 0-65536: 0—disable counting | R/W | 0x0000 |

The frame-start count (FSC) register is a 16-bit read-only register that contains the number of frame-start rising edges that occur during the programmable FARC period. The frame-start counting can be in one of two modes. When the CNT bit in the control and configuration (CTRL) register is set to 1, the counting is in continuous mode and this register is updated periodically (every time the frame adjustment reference count is met) with the new count value. If CNT is 0, the counting is in halt mode. The frame-start count register is updated when the frame adjustment reference count is met, and the counting halts until the software reads the FSC register.

A level-sensitive interrupt can be generated to indicate that the frame-start counting is finished, and the FSC register is loaded with a new count value. The interrupt is controlled by the INT\_ENABLE bit in the control and configuration (CTRL) register. If this bit is set to 1, an interrupt is generated when the FSC register is updated. Because the interrupt is level-sensitive, the interrupt signal is kept low until the software reads the FSC register, or the RUN bit in the control register is set to 0. When the FSC is read or RUN bit in control register is set to 0, the interrupt signal is reset to 1. When the IN\_ENABLE bit is set to 0, no interrupt is generated. The interrupt can be enabled or disabled for both continuous mode and halt mode.

#### Table 120. Frame Start Count Register (FSC)

|      |      | Base Address = 0xFFFB A800, Offset Address = 0x04 |     |        |
|------|------|---------------------------------------------------|-----|--------|
| Bit  | Name | Function                                          | R/W | Reset  |
| 15:0 | FS   | 16-bit value                                      | R   | 0x0000 |

The control and configuration (CTRL) register is a R/W register used to configure the module. The RUN bit enables the frame-start counter. If this bit is set to 0, the frame-start counting is disabled immediately. The software can use this bit as a software reset for the FAC module by setting the RUN bit to 0. When the RUN bit is set to 0, the frame-start counter, the frame-synchronization counter, and the FSC register are reset to 0. The software reset also clears the status register FSC\_FULL bit to 0. If an interrupt has been generated and the FAC module is waiting for an FSC register read, a software reset puts the counter control back to idle state. This means that after the software has been reset the counter starts counting again, regardless of whether the FSC register has been read or not.

| Base Address = 0xFFFB A800, Offset Address = 0x08 |            |                                                                                                                                                                                                                                                                |     |        |
|---------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
| Bit                                               | Name       | Function                                                                                                                                                                                                                                                       | R/W | Reset  |
| 15:3                                              | Reserved   | Reserved                                                                                                                                                                                                                                                       | R   | 0x0000 |
| 2                                                 | INT_ENABLE | The INT_ENABLE bit is independent of the CNT bit. The<br>interrupt can be enabled or disabled in either continuous<br>mode or halt mode.                                                                                                                       | R/W | 0      |
|                                                   |            | 0: No interrupt is generated.<br>1: An interrupt is generated when FSC is updated.                                                                                                                                                                             |     |        |
| 1                                                 | RUN        | Enables operation of the counter.                                                                                                                                                                                                                              | R/W | 0      |
|                                                   |            | <ul><li>0: The frame start counter, the frame-synchronization counter, and the FSC are reset to 0. Any pending interrupt also is cleared when RUN is set to 0.</li><li>1: Enables the frame start counter.</li></ul>                                           |     |        |
| 0                                                 | CNT        | <ul> <li>0: Halt mode– updates FSC value when the frame-adjustment reference count is met and halts operation until FSC is read.</li> <li>1: Continuous mode– periodically updates FSC value each time the frame-adjustment reference count is met.</li> </ul> | R/W | 0      |

## Table 122. FAC Status Register (STATUS)

|      |          | Base Address = 0xFFFB A800, Offset Address = 0x0C                                                                              |     |        |
|------|----------|--------------------------------------------------------------------------------------------------------------------------------|-----|--------|
| Bit  | Name     | Function                                                                                                                       | R/W | Reset  |
| 15:1 | Reserved | Reserved                                                                                                                       | R   | 0x0000 |
| 0    | FSC_FULL | This bit is set to a 1 when FSC is updated. This bit is set back to a 0 when the FSC has been read or RUN bit in control is 0. | R/C | 0      |

The status register (STATUS) contains an interrupt status bit.

## Table 123. SYNC Counter Register (SYNC\_CNT)

| Base Address = 0xFFFB A800, Offset Address = 0x10 |      |                  |     |        |
|---------------------------------------------------|------|------------------|-----|--------|
| Bit                                               | Name | Function         | R/W | Reset  |
| 15:0                                              | SC   | Sync count value | R   | 0x0000 |

### Table 124. Start Counter Register (START\_CNT)

|      |      | Base Address = 0xFFFB A800, Offset Address = 0x14 |     |        |
|------|------|---------------------------------------------------|-----|--------|
| Bit  | Name | Function                                          | R/W | Reset  |
| 15:0 | SC   | Start count value                                 | R   | 0x0000 |

# **Revision History**

Table 125 lists the changes made since the previous version of this document.

Table 125. Document Revision History

| Page | Additions/Modifications/Deletions                                   |
|------|---------------------------------------------------------------------|
| 114  | Modified introduction to section 4, Multichannel Serial Interfaces. |

This page is intentionally left blank.

226 Multichannel Serial Interface (MCSI)

SPRU760C

# Index



Autotransmit mode protocol 111



Burst, mode, MCSI 115

```
С
```

Channel, MCSI, multichannel enable 116 Clock frequency, MCSI transmit 117 polarity, MCSI (normal/inverted) 116 Communication, protocol 114 Continuous mode, MCSI 115

## D

DMA channel, operation (DSP) 122 public peripherals *receive* 123 *transmit* 123 receive, public peripherals 123 transmit, public peripherals 123 DSP DMA public peripherals, receive 123 management of MCSI 118 public peripherals *DMA channel operation* 122 *DMA transmit* 123 DSP public peripherals, communication, protocol 114



EEPROM interface, protocol, MicroWire interface 106



Frame duration error, MCSI 120 mode (MCSI), continuous/burst 115 size, MCSI 116 structure (MCSI) *multichannel 115* synchronization, MPU public peripherals 217 synchronization (MCSI) *normal/alternate 115 normal/inverted 116 short/long frame 115* 



Interface activation, MCSI 124 management, MCSI 118 Interrupt associations, MCSI 118 mapping *MCSI1 138 MCSI2 140* program, MCSI 122



LCD controller, protocol 109

SPRU760B

Index 227

## Μ

Master, mode (MCSI) 114 Master/slave control, MCSI 114 MCSI chronograms 125 clock, normal/inverted polarity 116 communication protocol 114 configuration example 117 frame size 116 parameters 114 word size 116 features 114 frame structure multichannel 115 single-channel 115 frame-synchronization normal/alternate 115 normal/inverted 116 interface activation 124 management 118 interrupt associations 118 frame duration error 120 generation 118 programming 122 receive 119 reset 122 transmit 119 unmasking 122 validating 122 multichannel mode, channel enable 116 received data loading 118 registers, write protection 130 short/long framing 115 slave/master control 114 software reset 125 start sequence 124 stop 118 stop sequence 125 transmission clock, frequency 117 transmit data loading 117 MCSI1 interrupt, mapping 138 request, mapping 139

MCSI2, interrupt, mapping 140 MPU, public peripherals frame adjustment counter 216 frame synchronization 217 MPU public peripherals, MicroWire interface protocol 106 registers 99 Multichannel enable, MCSI 116 frame structure 115

## Ν

notational conventions 3

## Ρ

Protocol autotransmit mode, example 111 communication, DSP public peripherals 114 LCD controller, example 109 MicroWire interface 106 serial EEPROM, example 107 Public peripherals, MPU frame adjustment counter 216 frame synchronization 217

## R

Receive, interrupt, MCSI 119 related documentation from Texas Instruments 3 Request, mapping, MCSI1 139 Reset, software, MCSI 125

## S

Serial EEPROM protocol 107 Short/long framing (MCSI) 115 Single–channel frame structure, MCSI 115 Slave mode, MCSI 114 Slave/master control, MCSI 114 Synchronization, frame, MPU public peripherals 217

228 Index

SPRU760B



trademarks 3 Transmission, clock frequency, MCSI 117 Transmit, interrupt, MCSI 119



Word, size, MCSI 116