
TMS320DM335
Digital Media System-on-Chip (DMSoC)
Inter-Integrated Circuit (I2C) Module

Reference Guide

Literature Number: SPRUFY3
July 2008



2 SPRUFY3–July 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


Contents

Preface ........................................................................................................................................ 6
1 Introduction......................................................................................................................... 9

1.1 Purpose of the Peripheral................................................................................................ 9
1.2 Features .................................................................................................................... 9
1.3 Functional Block Diagram .............................................................................................. 10
1.4 Industry Standard(s) Compliance Statement ........................................................................ 10

2 Peripheral Architecture ....................................................................................................... 11
2.1 Bus Structure............................................................................................................. 11
2.2 Clock Generation ........................................................................................................ 12
2.3 Clock Synchronization .................................................................................................. 13
2.4 Signal Descriptions ...................................................................................................... 14
2.5 START and STOP Conditions ......................................................................................... 14
2.6 Serial Data Formats ..................................................................................................... 15
2.7 Operating Modes ........................................................................................................ 17
2.8 NACK Bit Generation ................................................................................................... 18
2.9 Arbitration................................................................................................................. 19
2.10 Reset Considerations ................................................................................................... 19
2.11 Initialization ............................................................................................................... 20
2.12 Interrupt Support......................................................................................................... 20
2.13 DMA Events Generated by the I2C Peripheral ...................................................................... 20
2.14 Power Management ..................................................................................................... 21
2.15 Emulation Considerations .............................................................................................. 21

3 Registers........................................................................................................................... 21
3.1 I2C Own Address Register (ICOAR).................................................................................. 22
3.2 I2C Interrupt Mask Register (ICIMR).................................................................................. 23
3.3 I2C Interrupt Status Register (ICSTR) ................................................................................ 24
3.4 I2C Clock Divider Registers (ICCLKL and ICCLKH) ................................................................ 27
3.5 I2C Data Count Register (ICCNT)..................................................................................... 28
3.6 I2C Data Receive Register (ICDRR).................................................................................. 29
3.7 I2C Slave Address Register (ICSAR) ................................................................................. 30
3.8 I2C Data Transmit Register (ICDXR) ................................................................................. 31
3.9 I2C Mode Register (ICMDR) ........................................................................................... 32
3.10 I2C Interrupt Vector Register (ICIVR)................................................................................. 36
3.11 I2C Extended Mode Register (ICEMDR) ............................................................................. 37
3.12 I2C Prescaler Register (ICPSC) ....................................................................................... 38
3.13 I2C Peripheral Identification Register (ICPID1)...................................................................... 39
3.14 I2C Peripheral Identification Register (ICPID2) ..................................................................... 39

SPRUFY3–July 2008 Table of Contents 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


www.ti.com

List of Figures
1 I2C Peripheral Block Diagram ........................................................................................... 10
2 Multiple I2C Modules Connected ........................................................................................ 11
3 Clocking Diagram for the I2C Peripheral ............................................................................... 12
4 Synchronization of Two I2C Clock Generators During Arbitration ................................................... 13
5 Bit Transfer on the I2C-Bus ............................................................................................... 14
6 I2C Peripheral START and STOP Conditions.......................................................................... 14
7 I2C Peripheral Data Transfer ............................................................................................. 15
8 I2C Peripheral 7-Bit Addressing Format (FDF = 0, XA = 0 in ICMDR) ............................................. 15
9 I2C Peripheral 10-Bit Addressing Format With Master-Transmitter Writing to Slave-Receiver (FDF = 0,

XA = 1 in ICMDR) .......................................................................................................... 16
10 I2C Peripheral Free Data Format (FDF = 1 in ICMDR) ............................................................... 16
11 I2C Peripheral 7-Bit Addressing Format With Repeated START Condition (FDF = 0, XA = 0 in ICMDR) ..... 16
12 Arbitration Procedure Between Two Master-Transmitters ............................................................ 19
13 I2C Own Address Register (ICOAR)..................................................................................... 22
14 I2C Interrupt Mask Register (ICIMR) .................................................................................... 23
15 I2C Interrupt Status Register (ICSTR)................................................................................... 24
16 I2C Clock Low-Time Divider Register (ICCLKL) ....................................................................... 27
17 I2C Clock High-Time Divider Register (ICCLKH) ...................................................................... 27
18 I2C Data Count Register (ICCNT) ....................................................................................... 28
19 I2C Data Receive Register (ICDRR)..................................................................................... 29
20 I2C Slave Address Register (ICSAR).................................................................................... 30
21 I2C Data Transmit Register (ICDXR) .................................................................................... 31
22 I2C Mode Register (ICMDR).............................................................................................. 32
23 Block Diagram Showing the Effects of the Digital Loopback Mode (DLB) Bit...................................... 35
24 I2C Interrupt Vector Register (ICIVR) ................................................................................... 36
25 I2C Extended Mode Register (ICEMDR)................................................................................ 37
26 I2C Prescaler Register (ICPSC).......................................................................................... 38
27 I2C Peripheral Identification Register 1 (ICPID1) ...................................................................... 39
28 I2C Peripheral Identification Register 2 (ICPID2) ...................................................................... 39

List of Figures4 SPRUFY3–July 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


www.ti.com

List of Tables
1 Operating Modes of the I2C Peripheral ................................................................................. 17
2 Ways to Generate a NACK Bit ........................................................................................... 18
3 Descriptions of the I2C Interrupt Events ................................................................................ 20
4 Inter-Integrated Circuit (I2C) Registers .................................................................................. 21
5 I2C Own Address Register (ICOAR) Field Descriptions .............................................................. 22
6 I2C Interrupt Mask Register (ICIMR) Field Descriptions .............................................................. 23
7 I2C Interrupt Status Register (ICSTR) Field Descriptions ............................................................ 24
8 I2C Clock Low-Time Divider Register (ICCLKL) Field Descriptions ................................................. 27
9 I2C Clock High-Time Divider Register (ICCLKH) Field Descriptions ................................................ 27
10 I2C Data Count Register (ICCNT) Field Descriptions ................................................................. 28
11 I2C Data Receive Register (ICDRR) Field Descriptions .............................................................. 29
12 I2C Slave Address Register (ICSAR) Field Descriptions ............................................................. 30
13 I2C Data Transmit Register (ICDXR) Field Descriptions.............................................................. 31
14 I2C Mode Register (ICMDR) Field Descriptions ....................................................................... 32
15 Master-Transmitter/Receiver Bus Activity Defined by RM, STT, and STP Bits .................................... 34
16 How the MST and FDF Bits Affect the Role of TRX Bit............................................................... 35
17 I2C Interrupt Vector Register (ICIVR) Field Descriptions ............................................................. 36
18 I2C Extended Mode Register (ICEMDR) Field Descriptions ......................................................... 37
19 I2C Prescaler Register (ICPSC) Field Descriptions ................................................................... 38
20 I2C Peripheral Identification Register 1 (ICPID1) Field Descriptions................................................ 39
21 I2C Peripheral Identification Register 2 (ICPID2) Field Descriptions................................................ 39

SPRUFY3–July 2008 List of Tables 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


Preface
SPRUFY3–July 2008

Read This First

This document describes the Inter-Integrated Circuit (I2C) Module on the TMS320DM335 Digital Media
System-on-Chip (DMSoC).

Notational Conventions
This document uses the following conventions.
• Hexadecimal numbers are shown with the suffix h. For example, the following number is 40

hexadecimal (decimal 64): 40h.
• Registers in this document are shown in figures and described in tables.

– Each register figure shows a rectangle divided into fields that represent the fields of the register.
Each field is labeled with its bit name, its beginning and ending bit numbers above, and its
read/write properties below. A legend explains the notation used for the properties.

– Reserved bits in a register figure designate a bit that is used for future device expansion.

Related Documentation from Texas Instruments
The following documents describe the TMS320DM335 Digital Media System-on-Chip (DMSoC). Copies of
these documents are available on the internet at www.ti.com.

SPRUFX7 — TMS320DM335 Digital Media System-on-Chip (DMSoC) ARM Subsystem Reference
Guide This document describes the ARM Subsystem in the TMS320DM335 Digital Media
System-on-Chip (DMSoC). The ARM subsystem is designed to give the ARM926EJ-S (ARM9)
master control of the device. In general, the ARM is responsible for configuration and control of the
device; including the components of the ARM Subsystem, the peripherals, and the external
memories.

SPRUFX8 —TMS320DM335 Digital Media System-on-Chip (DMSoC) Video Processing Front End
(VPFE) Reference Guide This document describes the Video Processing Front End (VPFE) in the
TMS320DM335 Digital Media System-on-Chip (DMSoC).

SPRUFX9 —TMS320DM335 Digital Media System-on-Chip (DMSoC) Video Processing Back End
(VPBE) Reference Guide This document describes the Video Processing Back End (VPBE) in the
TMS320DM335 Digital Media System-on-Chip (DMSoC).

SPRUFY0 —TMS320DM335 Digital Media System-on-Chip (DMSoC) 64-bit Timer Reference Guide
This document describes the operation of the software-programmable 64-bit timers in the
TMS320DM335 Digital Media System-on-Chip (DMSoC). Timer 0, Timer 1, and Timer 3 are used
as general-purpose (GP) timers and can be programmed in 64-bit mode, dual 32-bit unchained
mode, or dual 32-bit chained mode; Timer 2 is used only as a watchdog timer. The GP timer modes
can be used to generate periodic interrupts or enhanced direct memory access (EDMA)
synchronization events and Real Time Output (RTO) events (Timer 3 only). The watchdog timer
mode is used to provide a recovery mechanism for the device in the event of a fault condition, such
as a non-exiting code loop.

SPRUFY1 —TMS320DM335 Digital Media System-on-Chip (DMSoC) Serial Peripheral Interface (SPI)
Reference Guide This document describes the serial peripheral interface (SPI) in the
TMS320DM335 Digital Media System-on-Chip (DMSoC). The SPI is a high-speed synchronous
serial input/output port that allows a serial bit stream of programmed length (1 to 16 bits) to be
shifted into and out of the device at a programmed bit-transfer rate. The SPI is normally used for
communication between the DMSoC and external peripherals. Typical applications include an
interface to external I/O or peripheral expansion via devices such as shift registers, display drivers,
SPI EPROMs and analog-to-digital converters.

6 Preface SPRUFY3–July 2008
Submit Documentation Feedback

www.ti.com
http://www-s.ti.com/sc/techlit/SPRUFX7
http://www-s.ti.com/sc/techlit/SPRUFX8
http://www-s.ti.com/sc/techlit/SPRUFX9
http://www-s.ti.com/sc/techlit/SPRUFY0
http://www-s.ti.com/sc/techlit/SPRUFY1
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


www.ti.com Related Documentation from Texas Instruments

SPRUFY2 —TMS320DM335 Digital Media System-on-Chip (DMSoC) Universal Asynchronous
Receiver/Transmitter (UART) Reference Guide This document describes the universal
asynchronous receiver/transmitter (UART) peripheral in the TMS320DM335 Digital Media
System-on-Chip (DMSoC). The UART peripheral performs serial-to-parallel conversion on data
received from a peripheral device, and parallel-to-serial conversion on data received from the CPU.

SPRUFY3 —TMS320DM335 Digital Media System-on-Chip (DMSoC) Inter-Integrated Circuit (I2C)
Peripheral Reference Guide This document describes the inter-integrated circuit (I2C) peripheral
in the TMS320DM335 Digital Media System-on-Chip (DMSoC). The I2C peripheral provides an
interface between the DMSoC and other devices compliant with the I2C-bus specification and
connected by way of an I2C-bus. External components attached to this 2-wire serial bus can
transmit and receive up to 8-bit wide data to and from the DMSoC through the I2C peripheral. This
document assumes the reader is familiar with the I2C-bus specification.

SPRUFY5 —TMS320DM335 Digital Media System-on-Chip (DMSoC) Multimedia Card (MMC)/Secure
Digital (SD) Card Controller Reference Guide This document describes the multimedia card
(MMC)/secure digital (SD) card controller in the TMS320DM335 Digital Media System-on-Chip
(DMSoC). The MMC/SD card is used in a number of applications to provide removable data
storage. The MMC/SD controller provides an interface to external MMC and SD cards. The
communication between the MMC/SD controller and MMC/SD card(s) is performed by the MMC/SD
protocol.

SPRUFY6 —TMS320DM335 Digital Media System-on-Chip (DMSoC) Pulse-Width Modulator (PWM)
Reference Guide This document describes the pulse-width modulator (PWM) peripheral in the
TMS320DM335 Digital Media System-on-Chip (DMSoC).

SPRUFY7 —TMS320DM335 Digital Media System-on-Chip (DMSoC) Real-Time Out (RTO) Controller
Reference Guide This document describes the Real Time Out (RTO) controller in the
TMS320DM335 Digital Media System-on-Chip (DMSoC).

SPRUFY8 —TMS320DM335 Digital Media System-on-Chip (DMSoC) General-Purpose Input/Output
(GPIO) Reference Guide This document describes the general-purpose input/output (GPIO)
peripheral in the TMS320DM335 Digital Media System-on-Chip (DMSoC). The GPIO peripheral
provides dedicated general-purpose pins that can be configured as either inputs or outputs. When
configured as an input, you can detect the state of the input by reading the state of an internal
register. When configured as an output, you can write to an internal register to control the state
driven on the output pin.

SPRUFY9 —TMS320DM335 Digital Media System-on-Chip (DMSoC) Universal Serial Bus (USB)
Controller Reference Guide This document describes the universal serial bus (USB) controller in
the TMS320DM335 Digital Media System-on-Chip (DMSoC). The USB controller supports data
throughput rates up to 480 Mbps. It provides a mechanism for data transfer between USB devices
and also supports host negotiation.

SPRUFZ0 —TMS320DM335 Digital Media System-on-Chip (DMSoC) Enhanced Direct Memory
Access (EDMA) Controller Reference Guide This document describes the operation of the
enhanced direct memory access (EDMA3) controller in the TMS320DM335 Digital Media
System-on-Chip (DMSoC). The EDMA controller's primary purpose is to service user-programmed
data transfers between two memory-mapped slave endpoints on the DMSoC.

SPRUFZ1 —TMS320DM335 Digital Media System-on-Chip (DMSoC) Asynchronous External
Memory Interface (EMIF) Reference Guide This document describes the asynchronous external
memory interface (EMIF) in the TMS320DM335 Digital Media System-on-Chip (DMSoC). The EMIF
supports a glueless interface to a variety of external devices.

SPRUFZ2 — TMS320DM335 Digital Media System-on-Chip (DMSoC) DDR2/Mobile DDR
(DDR2/mDDR) Memory Controller Reference Guide This document describes the DDR2/mDDR
memory controller in the TMS320DM335 Digital Media System-on-Chip (DMSoC). The
DDR2/mDDR memory controller is used to interface with JESD79D-2A standard compliant DDR2
SDRAM and mobile DDR devices.

SPRUFY3–July 2008 Read This First 7
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRUFY2
http://www-s.ti.com/sc/techlit/SPRUFY3
http://www-s.ti.com/sc/techlit/SPRUFY5
http://www-s.ti.com/sc/techlit/SPRUFY6
http://www-s.ti.com/sc/techlit/SPRUFY7
http://www-s.ti.com/sc/techlit/SPRUFY8
http://www-s.ti.com/sc/techlit/SPRUFY9
http://www-s.ti.com/sc/techlit/SPRUFZ0
http://www-s.ti.com/sc/techlit/SPRUFZ1
http://www-s.ti.com/sc/techlit/SPRUFZ2
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


Related Documentation from Texas Instruments www.ti.com

SPRUFZ3 —TMS320DM335 Digital Media System-on-Chip (DMSoC) Audio Serial Port (ASP)
Reference Guide This document describes the operation of the audio serial port (ASP) audio
interface in the TMS320DM335 Digital Media System-on-Chip (DMSoC). The primary audio modes
that are supported by the ASP are the AC97 and IIS modes. In addition to the primary audio
modes, the ASP supports general serial port receive and transmit operation, but is not intended to
be used as a high-speed interface.

Trademarks

Read This First8 SPRUFY3–July 2008
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRUFZ3
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


1 Introduction

1.1 Purpose of the Peripheral

1.2 Features

1.2.1 Features Not Supported

Reference Guide
SPRUFY3–July 2008

Inter-Integrated Circuit (I2C) Peripheral

This document describes the operation of the inter-integrated circuit (I2C) peripheral in the
TMS320DM335 Digital Media System-on-Chip (DMSoC). The scope of this document assumes that you
are familiar with the Philips Semiconductors Inter-IC bus (I2C-bus) specification version 2.1.

The I2C peripheral provides an interface between the TMS320DM335 DMSoC and other devices that are
compliant with the I2C-bus specification and connected by way of an I2C-bus. External components that
are attached to this two-wire serial bus can transmit and receive data that is up to eight bits wide both to
and from the DMSoC through the I2C peripheral.

The I2C peripheral has the following features:
• Compliance with the Philips Semiconductors I2C-bus specification (version 2.1):

– Support for byte format transfer
– 7-bit and 10-bit addressing modes
– General call
– START byte mode
– Support for multiple master-transmitters and slave-receivers mode
– Support for multiple slave-transmitters and master-receivers mode
– Combined master transmit/receive and receive/transmit mode
– I2C data transfer rate of from 10 kbps up to 400 kbps (Philips I2C rate)

• 2 to 7 bit format transfer
• Free data format mode
• One read DMA event and one write DMA event that the DMA can use
• Seven interrupts that the CPU can use
• Peripheral enable/disable capability

• High-speed mode
• CBUS-compatibility mode
• The combined format in 10-bit addressing mode (the I2C sends the slave address the second byte

every time it sends the slave address the first byte).

SPRUFY3–July 2008 Inter-Integrated Circuit (I2C) Peripheral 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


1.3 Functional Block Diagram

ICXSR ICDXR

ICRSR ICDRR

Clock
synchronizer

Prescaler

Noise filters

Arbitrator

I2C INT

ICREVT

Peripheral data bus

Interrupt
to CPU

Sync events to
EDMA controller

SDA

SCL

Control/status
registers

CPU

EDMA

I2C peripheral

ICXEVT

1.4 Industry Standard(s) Compliance Statement

Introduction www.ti.com

A block diagram of the I2C peripheral is shown in Figure 1. Refer to Section 2 for detailed information
about the architecture of the I2C peripheral.

Figure 1. I2C Peripheral Block Diagram

The I2C peripheral is compliant with the Philips Semiconductors Inter-IC bus (I2C-bus) specification
version 2.1.

10 Inter-Integrated Circuit (I2C) Peripheral SPRUFY3–July 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


2 Peripheral Architecture

2.1 Bus Structure

TI device

I2C

I2C

EPROM

I2C

I2C

TI device

VDD

Pull-up
resistors

Serial data (SDA)
Serial clock (SCL)

controller

www.ti.com Peripheral Architecture

The I2C peripheral consists of the following primary blocks:
• A serial interface: one data pin (SDA) and one clock pin (SCL)
• Data registers to temporarily hold receive data and transmit data traveling between the SDA pin and

the CPU or the EDMA controller
• Control and status registers
• A peripheral data bus interface to enable the CPU and the EDMA controller to access the I2C

peripheral registers
• A clock synchronizer to synchronize the I2C input clock (from the processor clock generator) and the

clock on the SCL pin, and to synchronize data transfers with masters of different clock speeds
• A prescaler to divide down the input clock that is driven to the I2C peripheral
• A noise filter on each of the two pins, SDA and SCL
• An arbitrator to handle arbitration between the I2C peripheral (when it is a master) and another master
• Interrupt generation logic, so that an interrupt can be sent to the CPU
• EDMA event generation logic, so that activity in the EDMA controller can be synchronized to data

reception and data transmission in the I2C peripheral

Figure 1 shows the four registers used for transmission and reception. The CPU or the EDMA controller
writes data for transmission to ICDXR and reads received data from ICDRR. When the I2C peripheral is
configured as a transmitter, data written to ICDXR is copied to ICXSR and shifted out on the SDA pin one
bit a time. When the I2C peripheral is configured as a receiver, received data is shifted into ICRSR and
then copied to ICDRR.

Figure 1 shows how the I2C peripheral is connected to the I2C bus. The I2C bus is a multi-master bus
that supports a multi-master mode. This allows more than one device capable of controlling the bus that is
connected to it. A unique address recognizes each I2C device. Each I2C device can operate as either
transmitter or receiver, depending on the function of the device. Devices that are connected to the I2C bus
can be considered a master or slave when performing data transfers, in addition to being a transmitter or
receiver.

Note: A master device is the device that initiates a data transfer on the bus and generates the
clock signals to permit that transfer. Any device that is addressed by this master is
considered a slave during this transfer.

An example of multiple I2C modules that are connected for a two-way transfer from one device to other
devices is shown in Figure 2.

Figure 2. Multiple I2C Modules Connected

SPRUFY3–July 2008 Inter-Integrated Circuit (I2C) Peripheral 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


2.2 Clock Generation

d
7
6
5

PLL1

I2C
prescaler

÷

Prescaled module clock−−MUST be set to 7−12 MHz!

I2C input clock

External
input clock

Register bits
(ICPSC[IPSC])

I2C clock
dividers

÷Register bits
(ICCLKL[ICCL]),
(ICCLKH[ICCH])

Prescaled module clock frequency�
I2C input clock frequency

(IPSC�1)

I2C module

I2C serial clock on SCL pin

To I2C bus

I2C serial clock frequency�
prescaled module clock frequency

(ICCL�d)�(ICCH�d)

Where d depends on IPSC value in ICPSC:

IPSC value
0
1
2h−FFh

Peripheral Architecture www.ti.com

As shown in Figure 3, PLL1 receives a signal from an external clock source and produces an I2C input
clock. A programmable prescaler ( ICPSC [IPSC] ) in the I2C module divides down the I2C input clock to
produce a prescaled module clock. The prescaled module clock must be operated within the range of
7 to 12 MHz. The I2C clock dividers divide down the high ( ICCLKH [ICCH] ) and low portions ( ICCLKL
[ICCL] ) of the prescaled module clock signal to produce the I2C serial clock, which appears on the SCL
pin when the I2C module is configured to be a master on the I2C bus.

Figure 3. Clocking Diagram for the I2C Peripheral

The prescaler (ICPSC [IPSC] ) must only be initialized while the I2C module is in the reset state (ICMDR
[IRS] = 0). The prescaled frequency only takes effect when ICMDR [IRS] is changed to 1. Changing the
ICPSC [IPSC] value while ICMDR [IRS] = 1 has no effect. Likewise, you must configure the I2C clock
dividers (ICCLKH [ICCH] and ICCLKL [ICCL] while the I2C module is still in reset (ICMDR [IRS] = 0).

Inter-Integrated Circuit (I2C) Peripheral12 SPRUFY3–July 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


2.3 Clock Synchronization

Wait
state Start HIGH

period

SCL from
device #1

SCL from
device #2

Bus line
SCL

www.ti.com Peripheral Architecture

Only one master device generates the clock signal (SCL) under normal conditions. However, there are
two or more masters during the arbitration procedure; and, you must synchronize the clock so that you
can compare the data output. Figure 4 illustrates the clock synchronization. The wired-AND property of
SCL means that a device that first generates a low period on SCL (device #1) overrules the other devices.
At this high-to-low transition, the clock generators of the other devices are forced to start their own low
period. The SCL is held low by the device with the longest low period. The other devices that finish their
low periods must wait for SCL to be released before starting their high periods. A synchronized signal on
SCL is obtained, where the slowest device determines the length of the low period and the fastest device
determines the length of the high period.

If a device pulls down the clock line for a longer time, the result is that all clock generators must enter the
wait state. This way, a slave slows down a fast master and the slow device creates enough time to store a
received data word or to prepare a data word that you are going to transmit.

Figure 4. Synchronization of Two I2C Clock Generators During Arbitration

SPRUFY3–July 2008 Inter-Integrated Circuit (I2C) Peripheral 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


2.4 Signal Descriptions

2.4.1 Input and Output Voltage Levels

2.4.2 Data Validity

Data line
stable data

Change of data
allowed

SDA

SCL

2.5 START and STOP Conditions

SDA

SCL

START
condition (S) condition (P)

STOP

Peripheral Architecture www.ti.com

The I2C peripheral has a serial data pin (SDA) and a serial clock pin (SCL) for data communication, as
shown in Figure 1. These two pins carry information between the TMS320DM335 device and other
devices that are connected to the I2C-bus. The SDA and SCL pins both are bi-directional. They each must
be connected to a positive supply voltage using a pull-up resistor. When the bus is free, both pins are
high. The driver of these two pins has an open-drain configuration to perform the required wired-AND
function.

See the device-specific data manual for additional timing and electrical specifications for these pins.

The master device generates one clock pulse for each data bit that is transferred. Due to a variety of
different technology devices that can be connected to the I2C-bus, the levels of logic 0 (low) and logic 1
(high) are not fixed and depend on the associated power supply level. See the device-specific data
manual for more information.

The data on SDA must be stable during the high period of the clock (see Figure 5). The high or low state
of the data line, SDA, can change only when the clock signal on SCL is low.

Figure 5. Bit Transfer on the I2C-Bus

The I2C peripheral can generate START and STOP conditions when the peripheral is configured to be a
master on the I2C-bus, as shown in Figure 6:
• The START condition is defined as a high-to-low transition on the SDA line while SCL is high. A

master drives this condition to indicate the start of a data transfer.
• The STOP condition is defined as a low-to-high transition on the SDA line while SCL is high. A master

drives this condition to indicate the end of a data transfer.

Figure 6. I2C Peripheral START and STOP Conditions

14 Inter-Integrated Circuit (I2C) Peripheral SPRUFY3–July 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


2.6 Serial Data Formats

SDA

SCL

MSB

Acknowledgement
bit from slave

(No-)Acknowledgement
bit from receiver

1 2 7 8 9 1 2 8 9

Slave address

ACK
START

condition (S)
STOP

condition (P)R/W ACK

Data

2.6.1 7-Bit Addressing Format

S Slave address R/W ACK Data ACK Data ACK P

7 n n1 1 1 1 1 1

www.ti.com Peripheral Architecture

The I2C-bus is considered busy after a START condition and before a subsequent STOP condition. The
bus busy (BB) bit of ICSTR is 1. The bus is considered free between a STOP condition and the next
START condition. The BB is 0.

The master mode (MST) bit and the START condition (STT) bit in ICMDR must both be 1 for the I2C
peripheral to start a data transfer with a START condition. The STOP condition (STP) bit must be set to 1
for the I2C peripheral to end a data transfer with a STOP condition. A repeated START condition
generates when BB is set to 1 and STT is also set to 1. See Section 3.9 for a description of ICMDR
(including the MST, STT, and STP bits).

Figure 7 shows an example of a data transfer on the I2C-bus. The I2C peripheral supports 1-bit to 8-bit
data values. Figure 7 is shown in an 8-bit data format (BC = 000 in ICMDR). Each bit put on the SDA line
is equivalent to one pulse on the SCL line. The data is always transferred with the most-significant bit
(MSB) first. The number of data values that can be transmitted or received is unrestricted; however, the
transmitters and receivers must agree on the number of data values being transferred.

The I2C peripheral supports the following data formats:
• 7-bit addressing mode
• 10-bit addressing mode
• Free data format mode

Figure 7. I2C Peripheral Data Transfer

In the 7-bit addressing format (Figure 8), the first byte after a START condition (S) consists of a 7-bit slave
address followed by a R/W bit. The R/W bit determines the direction of the data.
• R/W = 0: The master writes (transmits) data to the addressed slave.
• R/W = 1: The master reads (receives) data from the slave.

An extra clock cycle dedicated for acknowledgment (ACK) is inserted after the R/W bit. If the slave inserts
the ACK bit, n bits of data from the transmitter (master or slave, depending on the R/W bit) follow it. n is a
number from 1 to 8 that the bit count (BC) bits of ICMDR determine. The receiver inserts an ACK bit after
the data bits have been transferred.

Write a 0 to the expanded address enable (XA) bit of ICMDR to select the 7-bit addressing format.

Figure 8. I2C Peripheral 7-Bit Addressing Format (FDF = 0, XA = 0 in ICMDR)

n = The number of data bits (from 1 to 8) specified by the bit count (BC) field of ICMDR.

SPRUFY3–July 2008 Inter-Integrated Circuit (I2C) Peripheral 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


2.6.2 10-Bit Addressing Format

S

1

1 1 1 1 0 A A

7

A A A A A A A AACK0

11 8

ACK

1

Data

n

ACK

1

P

1

A A = 2 MSBs R/W 8 LSBs of slave address

2.6.3 Free Data Format

DataDataS

1

DataACK ACK ACK P

1n n n 111

2.6.4 Using a Repeated START Condition

1 7 n 7 n1 1 1 1 1 1 1 1

S Slave address R/W ACK Data ACK S Slave address R/W ACK Data ACK P

1 Any
number

1 Any number

Peripheral Architecture www.ti.com

The 10-bit addressing format (Figure 9) is like the 7-bit addressing format, but the master sends the slave
address in two separate byte transfers. The first byte consists of 11110b, the two MSBs of the 10-bit slave
address, and R/W = 0 (write). The second byte is the remaining 8 bits of the 10-bit slave address. The
slave must send acknowledgment (ACK) after each of the two byte transfers. Once the master has written
the second byte to the slave, the master can either write data or use a repeated START condition to
change the data direction. (For more information about using 10-bit addressing, see the Philips
Semiconductors I2C-bus specification.)

Write 1 to the XA bit of ICMDR to select the 10-bit addressing format.

Figure 9. I2C Peripheral 10-Bit Addressing Format With Master-Transmitter Writing to Slave-Receiver
(FDF = 0, XA = 1 in ICMDR)

n = The number of data bits (from 1 to 8) specified by the bit count (BC) field of ICMDR.

In the free data format (Figure 10), the first bits after a START condition (S) are a data word. An ACK bit is
inserted after each data word, which can be from 1 to 8 bits, depending on the bit count (BC) bits of
ICMDR. No address or data-direction bit is sent. Therefore, the transmitter and the receiver must both
support the free data format, and the direction of the data must be constant throughout the transfer.

To select the free data format, write 1 to the free data format (FDF) bit of ICMDR.

Figure 10. I2C Peripheral Free Data Format (FDF = 1 in ICMDR)

n = The number of data bits (from 1 to 8) specified by the bit count (BC) field of ICMDR.

The repeated START condition can be used with the 7-bit addressing, 10-bit addressing, and free data
formats. The 7-bit addressing format using a repeated START condition (S) is shown in Figure 11. At the
end of each data word, the master can drive another START condition. Using this capability, a master can
transmit/receive any number of data words before driving a STOP condition. The length of a data word
can be from 1 to 8 bits and is selected with the bit count (BC) bits of ICMDR.

Figure 11. I2C Peripheral 7-Bit Addressing Format With Repeated START Condition (FDF = 0,
XA = 0 in ICMDR)

n = The number of data bits (from 1 to 8) specified by the bit count (BC) field of ICMDR.

Inter-Integrated Circuit (I2C) Peripheral16 SPRUFY3–July 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


2.7 Operating Modes
www.ti.com Peripheral Architecture

The I2C peripheral has four basic operating modes to support data transfers as a master and as a slave.
See Table 1 for the names and descriptions of the modes.

If the I2C peripheral is a master, it begins as a master-transmitter and, typically, transmits an address for a
particular slave. When giving data to the slave, the I2C peripheral must remain a master-transmitter. In
order to receive data from a slave, the I2C peripheral must be changed to the master-receiver mode.

If the I2C peripheral is a slave, it begins as a slave-receiver and, typically, sends acknowledgment when it
recognizes its slave address from a master. If the master will be sending data to the I2C peripheral, the
peripheral must remain a slave-receiver. If the master has requested data from the I2C peripheral, the
peripheral must be changed to the slave-transmitter mode.

Table 1. Operating Modes of the I2C Peripheral
Operating Mode Description
Slave-receiver mode The I2C peripheral is a slave and receives data from a master. All slave modules begin in this

mode. In this mode, serial data bits received on SDA are shifted in with the clock pulses that are
generated by the master. As a slave, the I2C peripheral does not generate the clock signal, but it
can hold SCL low while the intervention of the processor is required (RSFULL = 1 in ICSTR) after
data has been received.

Slave-transmitter mode The I2C peripheral is a slave and transmits data to a master. This mode can only be entered from
the slave-receiver mode; the I2C peripheral must first receive a command from the master. When
you are using any of the 7-bit/10-bit addressing formats, the I2C peripheral enters its
slave-transmitter mode if the slave address is the same as its own address (in ICOAR) and the
master has transmitted R/W = 1. As a slave-transmitter, the I2C peripheral then shifts the serial
data out on SDA with the clock pulses that are generated by the master. While a slave, the I2C
peripheral does not generate the clock signal, but it can hold SCL low while the intervention of the
processor is required (XSMT = 0 in ICSTR) after data has been transmitted.

Master-receiver mode The I2C peripheral is a master and receives data from a slave. This mode can only be entered
from the master-transmitter mode; the I2C peripheral must first transmit a command to the slave.
When you are using any of the 7-bit/10-bit addressing formats, the I2C peripheral enters its
master-receiver mode after transmitting the slave address and R/W = 1. Serial data bits on SDA
are shifted into the I2C peripheral with the clock pulses generated by the I2C peripheral on SCL.
The clock pulses are inhibited and SCL is held low when the intervention of the processor is
required (RSFULL = 1 in ICSTR) after data has been received.

Master-transmitter mode The I2C peripheral is a master and transmits control information and data to a slave. All master
modules begin in this mode. In this mode, data assembled in any of the 7-bit/10-bit addressing
formats is shifted out on SDA. The bit shifting is synchronized with the clock pulses generated by
the I2C peripheral on SCL. The clock pulses are inhibited and SCL is held low when the
intervention of the processor is required (XSMT = 0 in ICSTR) after data has been transmitted.

SPRUFY3–July 2008 Inter-Integrated Circuit (I2C) Peripheral 17
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


2.8 NACK Bit Generation
Peripheral Architecture www.ti.com

When the I2C peripheral is a receiver (master or slave), it can acknowledge or ignore bits sent by the
transmitter. To ignore any new bits, the I2C peripheral must send a no-acknowledge (NACK) bit during the
acknowledge cycle on the bus. Table 2 summarizes the various ways the I2C peripheral sends a NACK
bit.

Table 2. Ways to Generate a NACK Bit
NACK Bit Generation

I2C Peripheral
Condition Basic Optional
Slave-receiver mode Set the NACKMOD bit of ICMDR before the rising• Disable data transfers (STT = 0 in ICSTR).

edge of the last data bit you intend to receive.• Allow an overrun condition (RSFULL = 1 in
ICSTR).

• Reset the peripheral (IRS = 0 in ICMDR)
.

Master-receiver mode Set the NACKMOD bit of ICMDR before the rising• Generate a STOP condition (STOP = 1 in
AND edge of the last data bit you intend to receive.ICMDR).
Repeat mode • Reset the peripheral (IRS = 0 in ICMDR).(RM = 1 in ICMDR)
Master-receiver mode Set the NACKMOD bit of ICMDR before the rising• If STP = 1 in ICMDR, allow the internal data
AND edge of the last data bit you intend to receive.counter to count down to 0 and force a STOP
Nonrepeat mode condition.
(RM = 0 in ICMDR) • If STP = 0, make STP = 1 to generate a

STOP condition.
• Reset the peripheral (IRS = 0 in ICMDR).

Inter-Integrated Circuit (I2C) Peripheral18 SPRUFY3–July 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


2.9 Arbitration

1

0 0 01

0 0 0

1 1

111

0

Device #1 lost arbitration
and switches off

Bus line
SCL

Data from
device #1

Data from
device #2

Bus line
SDA

2.10 Reset Considerations

2.10.1 Software Reset Considerations

2.10.2 Hardware Reset Considerations

www.ti.com Peripheral Architecture

If two or more master-transmitters simultaneously start a transmission on the same bus, an arbitration
procedure is invoked. The arbitration procedure uses the data presented on the serial data bus (SDA) by
the competing transmitters. Figure 12 illustrates the arbitration procedure between two devices. The first
master-transmitter, which drives SDA high, is overruled by another master-transmitter that drives SDA low.
The arbitration procedure gives priority to the device that transmits the serial data stream with the lowest
binary value. Should two or more devices send identical first bytes, arbitration continues on the
subsequent bytes.

If the I2C peripheral is the losing master, it switches to the slave-receiver mode, sets the arbitration lost
(AL) flag, and generates the arbitration-lost interrupt.

If during a serial transfer the arbitration procedure is still in progress when a repeated START condition or
a STOP condition is transmitted to SDA, the master-transmitters involved must send the repeated START
condition or the STOP condition at the same position in the format frame. Arbitration is not allowed
between:
• A repeated START condition and a data bit
• A STOP condition and a data bit
• A repeated START condition and a STOP condition

Figure 12. Arbitration Procedure Between Two Master-Transmitters

The I2C peripheral has two reset sources: software reset and hardware reset.

To reset the I2C peripheral, write 0 to the I2C reset (IRS) bit in the I2C mode register (ICMDR). All status
bits in the I2C interrupt status register (ICSTR) are forced to their default values, and the I2C peripheral
remains disabled until IRS is changed to 1. The SDA and SCL pins are in the high-impedance state.

Note: If the IRS bit is cleared to 0 during a transfer, this can cause the I2C bus to hang (SDA and
SCL are in the high-impedance state).

When a hardware reset occurs, all the registers of the I2C peripheral are set to their default values and
the I2C peripheral remains disabled until the I2C reset (IRS) bit in the I2C mode register (ICMDR) is
changed to 1.

SPRUFY3–July 2008 Inter-Integrated Circuit (I2C) Peripheral 19
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


2.11 Initialization

2.12 Interrupt Support

2.12.1 Interrupt Events and Requests

2.12.2 Interrupt Multiplexing

2.13 DMA Events Generated by the I2C Peripheral

Peripheral Architecture www.ti.com

Note: The IRS bit must be cleared to 0 while you configure/reconfigure the I2C peripheral. Forcing
IRS to 0 can be used to save power and to clear error conditions.

This section should cover the initialization issues and information that are not related to a specific
supported mode or use case, such as how to bring the peripheral out of reset. Any information specific to
one of the supported use cases (like the proper configuration for that use case) should be covered in the
corresponding supported use case section.

The I2C peripheral is capable of interrupting the ARM CPU. The CPU can determine which I2C events
caused the interrupt by reading the I2C interrupt vector register (ICIVR). ICIVR contains a binary-coded
interrupt vector type to indicate which interrupt has occurred. Reading ICIVR clears the interrupt flag; if
other interrupts are pending, a new interrupt is generated. If there is more than one pending interrupt flag,
reading ICIVR clears the highest-priority interrupt flag.

The I2C peripheral can generate the interrupts described in Table 3. Each interrupt has a flag bit in the
I2C interrupt status register (ICSTR) and a mask bit in the interrupt mask register (ICIMR). When one of
the specified events occurs, its flag bit is set. If the corresponding mask bit is 0, the interrupt request is
blocked; if the mask bit is 1, the request is forwarded to the CPU as an I2C interrupt.

Table 3. Descriptions of the I2C Interrupt Events
I2C Interrupt Initiating Event
Arbitration-lost interrupt (AL) Generated when the I2C arbitration procedure is lost or illegal START/STOP conditions

occur
No-acknowledge interrupt (NACK) Generated when the master I2C does not receive any acknowledge from the receiver
Registers-ready-for-access interrupt Generated by the I2C when the previously programmed address, data and command have
(ARDY) been performed and the status bits have been updated. This interrupt is used to let the

controlling processor know that the I2C registers are ready to be accessed.
Receive interrupt/status (ICRINT Generated when the received data in the receive-shift register (ICRSR) has been copied into
and ICRRDY) the ICDRR. The ICRRDY bit can also be polled by the CPU to read the received data in the

ICDRR.
Transmit interrupt/status (ICXINT Generated when the transmitted data has been copied from ICDXR to the transmit-shift
and ICXRDY) register (ICXSR) and shifted out on the SDA pin. This bit can also polled by the CPU to write

the next transmitted data into the ICDXR.
Stop-Condition-Detection interrupt Generated when a STOP condition has been detected
(SCD)
Address-as-Slave interrupt (AAS) Generated when the I2C has recognized its own slave address or an address of all (8)

zeros.

The I2C interrupt to the ARM CPU are not multiplexed with any other interrupt source.

For the EDMA controller to handle transmit and receive data, the I2C peripheral generates the following
two EDMA events. Activity in EDMA channels can be synchronized to these events.
• Receive event (ICREVT): When receive data has been copied from the receive shift register (ICRSR)

to the data receive register (ICDRR), the I2C peripheral sends an REVT signal to the EDMA controller.
In response, the EDMA controller can read the data from ICDRR.

20 Inter-Integrated Circuit (I2C) Peripheral SPRUFY3–July 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


2.14 Power Management

2.15 Emulation Considerations

3 Registers

www.ti.com Registers

• Transmit event (ICXEVT): When transmit data has been copied from the data transmit register
(ICDXR) to the transmit shift register (ICXSR), the I2C peripheral sends an XEVT signal to the EDMA
controller. In response, the EDMA controller can write the next transmit data value to ICDXR.

The I2C peripheral can be placed in reduced-power modes to conserve power during periods of low
activity. The power management of the I2C peripheral is controlled by the processor Power and Sleep
Controller (PSC). The PSC acts as a master controller for power management for all of the peripherals on
the device. For detailed information on power management procedures using the PSC, see the
TMS320DM335 Digital Media System-on-Chip (DMSoC) ARM Subsystem Reference Guide (SPRUFX7).

The response of the I2C events to emulation suspend events (such as halts and breakpoints) is controlled
by the FREE bit in the I2C mode register (ICMDR). The I2C peripheral either stops exchanging data
(FREE = 0) or continues to run (FREE = 1) when an emulation suspend event occurs. How the I2C
peripheral terminates data transactions is affected by whether the I2C peripheral is acting as a master or a
slave. For more information, see the description of the FREE bit in ICMDR (see Section 3.9).

Table 4 lists the memory-mapped registers for the inter-integrated circuit (I2C) peripheral. See the
device-specific data manual for the memory address of these registers. All other register offset addresses
not listed in Table 4 should be considered as reserved locations and the register contents should not be
modified.

Table 4. Inter-Integrated Circuit (I2C) Registers
Offset Acronym Register Description Section

0h ICOAR I2C Own Address Register Section 3.1
4h ICIMR I2C Interrupt Mask Register Section 3.2
8h ICSTR I2C Interrupt Status Register Section 3.3
Ch ICCLKL I2C Clock Low-Time Divider Register Section 3.4
10h ICCLKH I2C Clock High-Time Divider Register Section 3.4
14h ICCNT I2C Data Count Register Section 3.5
18h ICDRR I2C Data Receive Register Section 3.6
1Ch ICSAR I2C Slave Address Register Section 3.7
20h ICDXR I2C Data Transmit Register Section 3.8
24h ICMDR I2C Mode Register Section 3.9
28h ICIVR I2C Interrupt Vector Register Section 3.10
2Ch ICEMDR I2C Extended Mode Register Section 3.11
30h ICPSC I2C Prescaler Register Section 3.12
34h ICPID1 I2C Peripheral Identification Register 1 Section 3.13
38h ICPID2 I2C Peripheral Identification Register 2 Section 3.14

SPRUFY3–July 2008 Inter-Integrated Circuit (I2C) Peripheral 21
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRUFX7
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


3.1 I2C Own Address Register (ICOAR)
Registers www.ti.com

The I2C own address register (ICOAR) is used to specify its own slave address, which distinguishes it
from other slaves connected to the I2C-bus. If the 7-bit addressing mode is selected (XA = 0 in ICMDR),
only bits 6-0 are used; bits 9-7 are ignored.

The I2C own address register (ICOAR) is shown in Figure 13 and described in Table 5.

Figure 13. I2C Own Address Register (ICOAR)

31 16
Reserved

R-0

15 10 9 0

Reserved OADDR
R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 5. I2C Own Address Register (ICOAR) Field Descriptions
Bit Field Value Description

31-10 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.
9-0 OADDR 0-3FFh Own slave address. Provides the slave address of the I2C.

In 7-bit addressing mode (XA = 0 in ICMDR): bits 6-0 provide the 7-bit slave address of the I2C. Bits 9-7
are ignored.
In 10-bit addressing mode (XA = 1 in ICMDR): bits 9-0 provide the 10-bit slave address of the I2C.

Inter-Integrated Circuit (I2C) Peripheral22 SPRUFY3–July 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


3.2 I2C Interrupt Mask Register (ICIMR)
www.ti.com Registers

The I2C interrupt mask register (ICIMR) is used to individually enable or disable I2C interrupt requests.

The I2C interrupt mask register (ICIMR) is shown in Figure 14 and described Table 6.

Figure 14. I2C Interrupt Mask Register (ICIMR)

31 8
Reserved

R-0

7 6 5 4 3 2 1 0

Reserved AAS SCD ICXRDY ICRRDY ARDY NACK AL
R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6. I2C Interrupt Mask Register (ICIMR) Field Descriptions
Bit Field Value Description

31-7 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.
6 AAS Address-as-slave interrupt enable bit.

0 Interrupt request is disabled.
1 Interrupt request is enabled.

5 SCD Stop condition detected interrupt enable bit.
0 Interrupt request is disabled.
1 Interrupt request is enabled.

4 ICXRDY Transmit-data-ready interrupt enable bit.
0 Interrupt request is disabled.
1 Interrupt request is enabled.

3 ICRRDY Receive-data-ready interrupt enable bit.
0 Interrupt request is disabled.
1 Interrupt request is enabled.

2 ARDY Register-access-ready interrupt enable bit.
0 Interrupt request is disabled.
1 Interrupt request is enabled.

1 NACK No-acknowledgment interrupt enable bit.
0 Interrupt request is disabled.
1 Interrupt request is enabled.

0 AL Arbitration-lost interrupt enable bit
0 Interrupt request is disabled.
1 Interrupt request is enabled.

SPRUFY3–July 2008 Inter-Integrated Circuit (I2C) Peripheral 23
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


3.3 I2C Interrupt Status Register (ICSTR)
Registers www.ti.com

The I2C interrupt status register (ICSTR) is used to determine which interrupt has occurred and to read
status information.

The I2C interrupt status register (ICSTR) is shown in Figure 15 and described in Table 7.

Figure 15. I2C Interrupt Status Register (ICSTR)

31 16
Reserved

R-0

15 14 13 12 11 10 9 8

Reserved SDIR NACKSNT BB RSFULL XSMT AAS AD0
R-0 R/W1C-0 R/W1C-0 R/W1C-0 R-0 R-1 R-0 R-0

7 6 5 4 3 2 1 0

Reserved SCD ICXRDY ICRRDY ARDY NACK AL
R-0 R/W1C-0 R/W1C-1 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0

LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear (writing 0 has no effect); -n = value after reset

Table 7. I2C Interrupt Status Register (ICSTR) Field Descriptions
Bit Field Value Description

31-15 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.
14 SDIR Slave direction bit. In digital-loopback mode (DLB), the SDIR bit is cleared to 0.

0 I2C is acting as a master-transmitter/receiver or a slave-receiver. SDIR is cleared by one of the
following events:
• A STOP or a START condition.
• SDIR is manually cleared. To clear this bit, write a 1 to it.

1 I2C is acting as a slave-transmitter.
13 NACKSNT No-acknowledgment sent bit. NACKSNT bit is used when the I2C is in the receiver mode. One instance

in which NACKSNT is affected is when the NACK mode is used (see the description for NACKMOD in
Section 3.9).

0 NACK is not sent. NACKSNT is cleared by one of the following events:
• It is manually cleared. To clear this bit, write a 1 to it.
• The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when the processor is reset).

1 NACK is sent. A no-acknowledge bit was sent during the acknowledge cycle on the I2C-bus.
12 BB Bus busy bit. BB bit indicates whether the I2C-bus is busy or is free for another data transfer. In the

master mode, BB is controlled by the software.
0 Bus is free. BB is cleared by one of the following events:

• The I2C receives or transmits a STOP bit (bus free).
• BB is manually cleared. To clear this bit, write a 1 to it.
• The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when the processor is reset).

1 Bus is busy. When the STT bit in ICMDR is set to 1, a restart condition is generated. BB is set by one of
the following events:
• The I2C has received or transmitted a START bit on the bus.
• SCL is in a low state and the IRS bit in ICMDR is 0.

24 Inter-Integrated Circuit (I2C) Peripheral SPRUFY3–July 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


www.ti.com Registers

Table 7. I2C Interrupt Status Register (ICSTR) Field Descriptions (continued)
Bit Field Value Description
11 RSFULL Receive shift register full bit. RSFULL indicates an overrun condition during reception. Overrun occurs

when the receive shift register (ICRSR) is full with new data but the previous data has not been read
from the data receive register (ICDRR). The new data will not be copied to ICDRR until the previous
data is read. As new bits arrive from the SDA pin, they overwrite the bits in ICRSR.

0 No overrun is detected. RSFULL is cleared by one of the following events:
• ICDRR is read.
• The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when the processor is reset).

1 Overrun is detected.
10 XSMT Transmit shift register empty bit. XSMT indicates that the transmitter has experienced underflow.

Underflow occurs when the transmit shift register (ICXSR) is empty but the data transmit register
(ICDXR) has not been loaded since the last ICDXR-to-ICXSR transfer. The next ICDXR-to-ICXSR
transfer will not occur until new data is in ICDXR. If new data is not transferred in time, the previous
data may be re-transmitted on the SDA pin.

0 Underflow is detected.
1 No underflow is detected. XSMT is set by one of the following events:

• Data is written to ICDXR.
• The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when the processor is reset).

9 AAS Addressed-as-slave bit.
0 The AAS bit has been cleared by a repeated START condition or by a STOP condition.
1 AAS is set by one of the following events:

• I2C has recognized its own slave address or an address of all zeros (general call).
• The first data word has been received in the free data format (FDF = 1 in ICMDR).

8 AD0 Address 0 bit.
0 AD0 has been cleared by a START or STOP condition.
1 An address of all zeros (general call) is detected.

7-6 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.
5 SCD Stop condition detected bit. SCD indicates when a STOP condition has been detected on the I2C bus.

The STOP condition could be generated by the I2C or by another I2C device connected to the bus.
0 No STOP condition has been detected. SCD is cleared by one of the following events:

• By reading the INTCODE bits in ICIVR as 110b.
• SCD is manually cleared. To clear this bit, write a 1 to it.

1 A STOP condition has been detected.
4 ICXRDY Transmit-data-ready interrupt flag bit. ICXRDY indicates that the data transmit register (ICDXR) is ready

to accept new data because the previous data has been copied from ICDXR to the transmit shift
register (ICXSR). The CPU can poll ICXRDY or use the XRDY interrupt request.

0 ICDXR is not ready. ICXRDY is cleared by one of the following events:
• Data is written to ICDXR.
• ICXRDY is manually cleared. To clear this bit, write a 1 to it.

1 ICDXR is ready. Data has been copied from ICDXR to ICXSR. ICXRDY is forced to 1 when the I2C is
reset.

3 ICRRDY Receive-data-ready interrupt flag bit. ICRRDY indicates that the data receive register (ICDRR) is ready
to be read because data has been copied from the receive shift register (ICRSR) to ICDRR. The CPU
can poll ICRRDY or use the RRDY interrupt request.

0 ICDRR is not ready. ICRRDY is cleared by one of the following events:
• ICDRR is read.
• ICRRDY is manually cleared. To clear this bit, write a 1 to it.
• The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when the processor is reset).

1 ICDRR is ready. Data has been copied from ICRSR to ICDRR.

SPRUFY3–July 2008 Inter-Integrated Circuit (I2C) Peripheral 25
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


Registers www.ti.com

Table 7. I2C Interrupt Status Register (ICSTR) Field Descriptions (continued)
Bit Field Value Description
2 ARDY Register-access-ready interrupt flag bit (only applicable when the I2C is in the master mode). ARDY

indicates that the I2C registers are ready to be accessed because the previously programmed address,
data, and command values have been used. The CPU can poll ARDY or use the ARDY interrupt
request.

0 The registers are not ready to be accessed. ARDY is cleared by one of the following events:
• The I2C starts using the current register contents.
• ARDY is manually cleared. To clear this bit, write a 1 to it.
• The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when the processor is reset).

1 The registers are ready to be accessed.
• In the nonrepeat mode (RM = 0 in ICMDR): If STP = 0 in ICMDR, ARDY is set when the internal data

counter counts down to 0. If STP = 1, ARDY is not affected (instead, the I2C generates a STOP
condition when the counter reaches 0).

• In the repeat mode (RM = 1): ARDY is set at the end of each data word transmitted from ICDXR.
1 NACK No-acknowledgment interrupt flag bit. NACK applies when the I2C is a transmitter (master or slave).

NACK indicates whether the I2C has detected an acknowledge bit (ACK) or a no-acknowledge bit
(NACK) from the receiver. The CPU can poll NACK or use the NACK interrupt request.

0 ACK received/NACK is not received. NACK is cleared by one of the following events:
• An acknowledge bit (ACK) has been sent by the receiver.
• NACK is manually cleared. To clear this bit, write a 1 to it.
• The CPU reads the interrupt source register (ICISR) when the register contains the code for a NACK

interrupt.
• The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when the processor is reset).

1 NACK bit is received. The hardware detects that a no-acknowledge (NACK) bit has been received.
Note: While the I2C performs a general call transfer, NACK is 1, even if one or more slaves send
acknowledgment.

0 AL Arbitration-lost interrupt flag bit (only applicable when the I2C is a master-transmitter). AL primarily
indicates when the I2C has lost an arbitration contest with another master-transmitter. The CPU can poll
AL or use the AL interrupt request.

0 Arbitration is not lost. AL is cleared by one of the following events:
• AL is manually cleared. To clear this bit, write a 1 to it.
• The CPU reads the interrupt source register (ICISR) when the register contains the code for an AL

interrupt.
• The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when the processor is reset).

1 Arbitration is lost. AL is set by one of the following events:
• The I2C senses that it has lost an arbitration with two or more competing transmitters that started a

transmission almost simultaneously.
• The I2C attempts to start a transfer while the BB (bus busy) bit is set to 1.
When AL is set to 1, the MST and STP bits of ICMDR are cleared, and the I2C becomes a
slave-receiver.

Inter-Integrated Circuit (I2C) Peripheral26 SPRUFY3–July 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


3.4 I2C Clock Divider Registers (ICCLKL and ICCLKH)

3.4.1 I2C Clock Low-Time Divider Register (ICCLKL)

3.4.2 I2C Clock High-Time Divider Register (ICCLKH)

www.ti.com Registers

When the I2C is a master, the prescaled module clock is divided down for use as the I2C serial clock on
the SCL pin. The shape of the I2C serial clock depends on two divide-down values, ICCL and ICCH. For
detailed information on how these values are programmed, see Section 2.2.

For each I2C serial clock cycle, ICCL determines the amount of time the signal is low. ICCLKL must be
configured while the I2C is still in reset (IRS = 0 in ICMDR).

The I2C clock low-time divider register (ICCLKL) is shown in Figure 16 and described in Table 8.

Figure 16. I2C Clock Low-Time Divider Register (ICCLKL)

31 16
Reserved

R-0

15 0

ICCL
R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 8. I2C Clock Low-Time Divider Register (ICCLKL) Field Descriptions
Bit Field Value Description

31-16 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.
15-0 ICCL 0-FFFFh Clock low-time divide-down value of 1-65536. The period of the module clock is multiplied by

(ICCL + d) to produce the low-time duration of the I2C serial on the SCL pin.

For each I2C serial clock cycle, ICCH determines the amount of time the signal is high. ICCLKH must be
configured while the I2C is still in reset (IRS = 0 in ICMDR).

The I2C clock high-time divider register (ICCLKH) is shown in Figure 17 and described in Table 9.

Figure 17. I2C Clock High-Time Divider Register (ICCLKH)

31 16
Reserved

R-0

15 0

ICCH
R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 9. I2C Clock High-Time Divider Register (ICCLKH) Field Descriptions
Bit Field Value Description

31-16 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.

SPRUFY3–July 2008 Inter-Integrated Circuit (I2C) Peripheral 27
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


3.5 I2C Data Count Register (ICCNT)

Registers www.ti.com

Table 9. I2C Clock High-Time Divider Register (ICCLKH) Field Descriptions (continued)
Bit Field Value Description

15-0 ICCH 0-FFFFh Clock high-time divide-down value of 1-65536. The period of the module clock is multiplied by
(ICCH + d) to produce the high-time duration of the I2C serial on the SCL pin.

The I2C data count register (ICCNT) is used to indicate how many data words to transfer when the I2C is
configured as a master-transmitter (MST = 1 and TRX = 1 in ICMDR) and the repeat mode is off (RM = 0
in ICMDR). In the repeat mode (RM = 1), ICCNT is not used.

The value written to ICCNT is copied to an internal data counter. The internal data counter is decremented
by 1 for each data word transferred (ICCNT remains unchanged). If a STOP condition is requested
(STP = 1 in ICMDR), the I2C terminates the transfer with a STOP condition when the countdown is
complete (that is, when the last data word has been transferred).

The data count register (ICCNT) is shown in Figure 18 and described in Table 10.

Figure 18. I2C Data Count Register (ICCNT)

31 16
Reserved

R-0

15 0

ICDC
R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 10. I2C Data Count Register (ICCNT) Field Descriptions
Bit Field Value Description

31-16 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.
15-0 ICDC 0-FFFFh Data count value. When RM = 0 in ICMDR, ICDC indicates the number of data words to transfer in

the nonrepeat mode. When RM = 1 in ICMDR, the value in ICCNT is a don't care. If STP = 1 in
ICMDR, a STOP condition is generated when the internal data counter counts down to 0.

0 The start value loaded to the internal data counter is 65536.
1h-FFFFh The start value loaded to internal data counter is 1-65535.

Inter-Integrated Circuit (I2C) Peripheral28 SPRUFY3–July 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


3.6 I2C Data Receive Register (ICDRR)
www.ti.com Registers

The I2C data receive register (ICDRR) is used to read the receive data. The ICDRR can receive a data
value of up to 8 bits; data values with fewer than 8 bits are right-aligned in the D bits and the remaining D
bits are undefined. The number of data bits is selected by the bit count bits (BC) of ICMDR. The I2C
receive shift register (ICRSR) shifts in the received data from the SDA pin. Once data is complete, the I2C
copies the contents of ICRSR into ICDRR. The CPU and the EDMA controller cannot access ICRSR.

The I2C data receive register (ICDRR) is shown in Figure 19 and described in Table 11.

Figure 19. I2C Data Receive Register (ICDRR)

31 16
Reserved

R-0

15 8 7 0

Reserved D
R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 11. I2C Data Receive Register (ICDRR) Field Descriptions
Bit Field Value Description

31-8 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.
7-0 D 0-FFh Receive data.

SPRUFY3–July 2008 Inter-Integrated Circuit (I2C) Peripheral 29
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


3.7 I2C Slave Address Register (ICSAR)
Registers www.ti.com

The I2C slave address register (ICSAR) contains a 7-bit or 10-bit slave address. When the I2C is not
using the free data format (FDF = 0 in ICMDR), it uses this address to initiate data transfers with a slave
or slaves. When the address is nonzero, the address is for a particular slave. When the address is 0, the
address is a general call to all slaves. If the 7-bit addressing mode is selected (XA = 0 in ICMDR), only
bits 6-0 of ICSAR are used; bits 9-7 are ignored. The I2C slave address register (ICSAR) is shown in
Figure 20 and described in Table 12.

Figure 20. I2C Slave Address Register (ICSAR)

31 16
Reserved

R-0

15 10 9 0

Reserved SADDR
R-0 R/W-3FFh

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 12. I2C Slave Address Register (ICSAR) Field Descriptions
Bit Field Value Description

31-10 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.
9-0 SADDR 0-3FFh Slave address. Provides the slave address of the I2C.

In 7-bit addressing mode (XA = 0 in ICMDR): bits 6-0 provide the 7-bit slave address that the I2C
transmits when it is in the master-transmitter mode. Bits 9-7 are ignored.
In 10-bit addressing mode (XA = 1 in ICMDR): Bits 9-0 provide the 10-bit slave address that the
I2C transmits when it is in the master-transmitter mode.

Inter-Integrated Circuit (I2C) Peripheral30 SPRUFY3–July 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


3.8 I2C Data Transmit Register (ICDXR)
www.ti.com Registers

The CPU or EDMA writes transmit data to the I2C data transmit register (ICDXR). The ICDXR can accept
a data value of up to 8 bits. When writing a data value with fewer than 8 bits, the written data must be
right-aligned in the D bits. The number of data bits is selected by the bit count bits (BC) of ICMDR. Once
data is written to ICDXR, the I2C copies the contents of ICDXR into the I2C transmit shift register
(ICXSR). The ICXSR shifts out the transmit data from the SDA pin. The CPU and the EDMA controller
cannot access ICXSR.

The I2C data transmit register (ICDXR) is shown in Figure 21 and described in Table 13.

Figure 21. I2C Data Transmit Register (ICDXR)

31 16
Reserved

R-0

15 8 7 0

Reserved D
R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13. I2C Data Transmit Register (ICDXR) Field Descriptions
Bit Field Value Description

31-8 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.
7-0 D 0-FFh Transmit data.

SPRUFY3–July 2008 Inter-Integrated Circuit (I2C) Peripheral 31
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


3.9 I2C Mode Register (ICMDR)
Registers www.ti.com

The I2C mode register (ICMDR) contains the control bits of the I2C.

The I2C mode register (ICMDR) is shown in shown in Figure 22 and described in Table 14.

Figure 22. I2C Mode Register (ICMDR)

31 16
Reserved

R-0

15 14 13 12 11 10 9 8

NACKMOD FREE STT Reserved STP MST TRX XA
R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0

7 6 5 4 3 2 0

RM DLB IRS STB FDF BC
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14. I2C Mode Register (ICMDR) Field Descriptions
Bit Field Value Description

31-16 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.
15 NACKMOD No-acknowledge (NACK) mode bit (only applicable when the I2C is a receiver).

0 In slave-receiver mode: The I2C sends an acknowledge (ACK) bit to the transmitter during the each
acknowledge cycle on the bus. The I2C only sends a no-acknowledge (NACK) bit if you set the
NACKMOD bit.
In master-receiver mode: The I2C sends an ACK bit during each acknowledge cycle until the internal
data counter counts down to 0. When the counter reaches 0, the I2C sends a NACK bit to the
transmitter. To have a NACK bit sent earlier, you must set the NACKMOD bit.

1 In either slave-receiver or master-receiver mode: The I2C sends a NACK bit to the transmitter during
the next acknowledge cycle on the bus. Once the NACK bit has been sent, NACKMOD is cleared.
To send a NACK bit in the next acknowledge cycle, you must set NACKMOD before the rising edge of
the last data bit.

14 FREE This emulation mode bit is used to determine the state of the I2C when a breakpoint is encountered in
the high-level language debugger.

0 When I2C is master: If SCL is low when the breakpoint occurs, the I2C stops immediately and keeps
driving SCL low, whether the I2C is the transmitter or the receiver. If SCL is high, the I2C waits until
SCL becomes low and then stops.
When I2C is slave: A breakpoint forces the I2C to stop when the current transmission/reception is
complete.

1 The I2C runs free; that is, it continues to operate when a breakpoint occurs.
13 STT START condition bit (only applicable when the I2C is a master). The RM, STT, and STP bits determine

when the I2C starts and stops data transmissions (see Table 15). Note that the STT and STP bits can
be used to terminate the repeat mode.

0 In master mode, STT is automatically cleared after the START condition has been generated.
In slave mode, if STT is 0, the I2C does not monitor the bus for commands from a master. As a result,
the I2C performs no data transfers.

1 In master mode, setting STT to 1 causes the I2C to generate a START condition on the I2C-bus.
In slave mode, if STT is 1, the I2C monitors the bus and transmits/receives data in response to
commands from a master.

12 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.

32 Inter-Integrated Circuit (I2C) Peripheral SPRUFY3–July 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


www.ti.com Registers

Table 14. I2C Mode Register (ICMDR) Field Descriptions (continued)
Bit Field Value Description
11 STP STOP condition bit (only applicable when the I2C is a master). The RM, STT, and STP bits determine

when the I2C starts and stops data transmissions (see Table 15). Note that the STT and STP bits can
be used to terminate the repeat mode.

0 STP is automatically cleared after the STOP condition has been generated.
1 STP has been set to generate a STOP condition when the internal data counter of the I2C counts down

to 0.
10 MST Master mode bit. MST determines whether the I2C is in the slave mode or the master mode. MST is

automatically changed from 1 to 0 when the I2C master generates a STOP condition. See Table 16.
0 Slave mode. The I2C is a slave and receives the serial clock from the master.
1 Master mode. The I2C is a master and generates the serial clock on the SCL pin.

9 TRX Transmitter mode bit. When relevant, TRX selects whether the I2C is in the transmitter mode or the
receiver mode. Table 16 summarizes when TRX is used and when it is a don't care.

0 Receiver mode. The I2C is a receiver and receives data on the SDA pin.
1 Transmitter mode. The I2C is a transmitter and transmits data on the SDA pin.

8 XA Expanded address enable bit.
0 7-bit addressing mode (normal address mode). The I2C transmits 7-bit slave addresses (from bits 6-0 of

ICSAR), and its own slave address has 7 bits (bits 6-0 of ICOAR).
1 10-bit addressing mode (expanded address mode). The I2C transmits 10-bit slave addresses (from bits

9-0 of ICSAR), and its own slave address has 10 bits (bits 9-0 of ICOAR).
7 RM Repeat mode bit (only applicable when the I2C is a master-transmitter). The RM, STT, and STP bits

determine when the I2C starts and stops data transmissions (see Table 15). If the I2C is configured in
slave mode, the RM bit is don't care.

0 Nonrepeat mode. The value in the data count register (ICCNT) determines how many data words are
received/transmitted by the I2C.

1 Repeat mode. Data words are continuously received/transmitted by the I2C until the STP bit is manually
set to 1, regardless of the value in ICCNT.

6 DLB Digital loopback mode bit (only applicable when the I2C is a master-transmitter). This bit disables or
enables the digital loopback mode of the I2C. The effects of this bit are shown in Figure 23. Note that
DLB mode in the free data format mode (DLB = 1 and FDF = 1) is not supported.

0 Digital loopback mode is disabled.
1 Digital loopback mode is enabled. In this mode, the MST bit must be set to 1 and data transmitted out

of ICDXR is received in ICDRR after n clock cycles by an internal path, where:
n = ((I2C input clock frequency/prescaled module clock frequency) ＝ 8)
The transmit clock is also the receive clock. The address transmitted on the SDA pin is the address in
ICOAR.

5 IRS I2C reset bit. Note that if IRS is reset during a transfer, it can cause the I2C bus to hang (SDA and SCL
are in a high-impedance state).

0 The I2C is in reset/disabled. When this bit is cleared to 0, all status bits (in ICSTR) are set to their
default values.

1 The I2C is enabled.
4 STB START byte mode bit (only applicable when the I2C is a master). As described in version 2.1 of the

Philips I2C-bus specification, the START byte can be used to help a slave that needs extra time to
detect a START condition. When the I2C is a slave, the I2C ignores a START byte from a master,
regardless of the value of the STB bit.

0 The I2C is not in the START byte mode.
1 The I2C is in the START byte mode. When you set the START condition bit (STT), the I2C begins the

transfer with more than just a START condition. Specifically, it generates:
1. A START condition
2. A START byte (0000 0001b)
3. A dummy acknowledge clock pulse
4. A repeated START condition
The I2C sends the slave address that is in ICSAR.

SPRUFY3–July 2008 Inter-Integrated Circuit (I2C) Peripheral 33
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


Registers www.ti.com

Table 14. I2C Mode Register (ICMDR) Field Descriptions (continued)
Bit Field Value Description
3 FDF Free data format mode bit. Note that DLB mode in the free data format mode (DLB = 1 and FDF = 1) is

not supported. See Table 16.
0 Free data format mode is disabled. Transfers use the 7-/10-bit addressing format selected by the XA bit.
1 Free data format mode is enabled.

2-0 BC 0-7h Bit count bits. BC defines the number of bits (1 to 8) in the next data word that is to be received or
transmitted by the I2C. The number of bits selected with BC must match the data size of the other
device. Note that when BC = 0, a data word has 8 bits.
If the bit count is less than 8, receive data is right aligned in the D bits of ICDRR and the remaining D
bits are undefined. Also, transmit data written to ICDXR must be right aligned.

0 8 bits per data word
1h 1 bit per data word
2h 2 bits per data word
3h 3 bits per data word
4h 4 bits per data word
5h 5 bits per data word
6h 6 bits per data word
7h 7 bits per data word

Table 15. Master-Transmitter/Receiver Bus Activity Defined by RM, STT, and STP Bits
ICMDR Bit

RM STT STP Bus Activity (1) Description
0 0 0 None No activity
0 0 1 P STOP condition
0 1 0 S-A-D..(n)..D START condition, slave address, n data words (n = value in ICCNT)
0 1 1 S-A-D..(n)..D-P START condition, slave address, n data words, STOP condition (n = value in ICCNT)
1 0 0 None No activity
1 0 1 P STOP condition
1 1 0 S-A-D-D-D.. Repeat mode transfer: START condition, slave address, continuous data transfers

until STOP condition or next START condition
1 1 1 None Reserved bit combination (No activity

(1) A = Address; D = Data word; P = STOP condition; S = START condition

Inter-Integrated Circuit (I2C) Peripheral34 SPRUFY3–July 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


ICDRR ICRSR
0

1

ICSAR

ICOAR

0

1

ICDXR

ICXSR

0

1 0

0

DLB

SCL_IN

SCL_OUT

Address/data

To internal I2C logic

From internal I2C logic

To internal I2C logic

To ARM CPU or EDMA

From ARM CPU or EDMA

From ARM CPU or EDMA

From ARM CPU or EDMA

SCL

SDA

I2C peripheral

DLB

DLB

www.ti.com Registers

Table 16. How the MST and FDF Bits Affect the Role of TRX Bit
ICMDR Bit

MST FDF I2C State Function of TRX Bit
0 0 In slave mode but not free data format TRX is a don't care. Depending on the command from the master, the I2C

mode responds as a receiver or a transmitter.
0 1 In slave mode and free data format The free data format mode requires that the transmitter and receiver be

mode fixed. TRX identifies the role of the I2C:
TRX = 0: The I2C is a receiver.
TRX = 1: The I2C is a transmitter.

1 0 In master mode but not free data TRX identifies the role of the I2C:
format mode

TRX = 0: The I2C is a receiver.
TRX = 1: The I2C is a transmitter.

1 1 In master mode and free data format The free data format mode requires that the transmitter and receiver be
mode fixed. TRX identifies the role of the I2C:

TRX = 0: The I2C is a receiver.
TRX = 1: The I2C is a transmitter.

Figure 23. Block Diagram Showing the Effects of the Digital Loopback Mode (DLB) Bit

SPRUFY3–July 2008 Inter-Integrated Circuit (I2C) Peripheral 35
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


3.10 I2C Interrupt Vector Register (ICIVR)
Registers www.ti.com

The I2C interrupt vector register (ICIVR) is used by the CPU to determine which event generated the I2C
interrupt. Reading ICIVR clears the interrupt flag; if other interrupts are pending, a new interrupt is
generated. If there are more than one interrupt flag, reading ICIVR clears the highest priority interrupt flag.
Note that you must read (clear) ICIVR before doing another start; otherwise, ICIVR could contain an
incorrect (old interrupt flags) value.

The I2C interrupt vectore register (ICIVR) is shown in Figure 24 and described in Table 17.

Figure 24. I2C Interrupt Vector Register (ICIVR)

31 16
Reserved

R-0

15 2 0

Reserved INTCODE
R-0 R-0

LEGEND: R= Read only; -n = value after reset

Table 17. I2C Interrupt Vector Register (ICIVR) Field Descriptions
Bit Field Value Description

31-3 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.
2-0 INTCODE 0-7h Interrupt code bits. The binary code in INTCODE indicates which event generated an I2C interrupt.

0 None
1h Arbitration-lost interrupt (AL)
2h No-acknowledgment interrupt (NACK)
3h Register-access-ready interrupt (ARDY)
4h Receive-data-ready interrupt (ICRRDY)
5h Transmit-data-ready interrupt (ICXRDY)
6h Stop condition detected interrupt (SCD)
7h Address-as-slave interrupt (AAS)

Inter-Integrated Circuit (I2C) Peripheral36 SPRUFY3–July 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


3.11 I2C Extended Mode Register (ICEMDR)
www.ti.com Registers

The I2C extended mode register (ICEMDR) is used to indicate which condition generates a transmit data
ready interrupt.

The I2C extended mode register (ICEMDR) is shown in Figure 25 and described in Table 18.

Figure 25. I2C Extended Mode Register (ICEMDR)

31 16
Reserved

R-0

15 1 0

Reserved IGNACK BCM
R-0 R/W-0 R/W-1

LEGEND: R/W = Read/Write; R= Read only; -n = value after reset

Table 18. I2C Extended Mode Register (ICEMDR) Field Descriptions
Bit Field Value Description

31-2 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.
1 IGNACK Ignore NACK mode.

0 Master transmitter operates normally, that is, it discontinues the data transfer and sets the ARDY and
NACK bits in ICSTR when receiving a NACK from the slave.

1 Master transmitter ignores a NACK from the slave.
0 BCM Backward compatibility mode bit. Determines which condition generates a transmit data ready interrupt.

The BCM bit only has an effect when the I2C is operating as a slave-transmitter.
0 The transmit data ready interrupt is generated when the master requests more data by sending an

acknowledge signal after the transmission of the last data.
1 The transmit data ready interrupt is generated when the data in ICDXR is copied to ICXSR.

SPRUFY3–July 2008 Inter-Integrated Circuit (I2C) Peripheral 37
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


3.12 I2C Prescaler Register (ICPSC)
Registers www.ti.com

The I2C prescaler register (ICPSC) is used for dividing down the I2C input clock to obtain the desired
prescaled module clock for the operation of the I2C.

The IPSC bits must be initialized while the I2C is in reset (IRS = 0 in ICMDR). The prescaled frequency
takes effect only when the IRS bit is changed to 1. Changing the IPSC value while IRS = 1 has no effect.

The I2C prescaler register (ICPSC) is shown in Figure 26 and described in Table 19.

Figure 26. I2C Prescaler Register (ICPSC)

31 16
Reserved

R-0

15 8 7 0

Reserved IPSC
R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 19. I2C Prescaler Register (ICPSC) Field Descriptions
Bit Field Value Description

31-8 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.
7-0 IPSC 0-FFh I2C prescaler divide-down value. IPSC determines how much the I2C input clock is divided to create the

I2C prescaled module clock:
I2C clock frequency = I2C input clock frequency/(IPSC + 1)
Note: IPSC must be initialized while the I2C is in reset (IRS = 0 in ICMDR).

Inter-Integrated Circuit (I2C) Peripheral38 SPRUFY3–July 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


3.13 I2C Peripheral Identification Register (ICPID1)

3.14 I2C Peripheral Identification Register (ICPID2)

www.ti.com Registers

The I2C peripheral identification registers (ICPID1) contain identification data (class, revision, and type) for
the peripheral.

The I2C peripheral identification register (ICPID1) is shown in Figure 27 and described in Table 20.

Figure 27. I2C Peripheral Identification Register 1 (ICPID1)

31 16
Reserved

R-0

15 8 7 0

Class Revision
R-01h R-05h

LEGEND: R = Read only; -n = value after reset

Table 20. I2C Peripheral Identification Register 1 (ICPID1) Field Descriptions
Bit Field Value Description

31-16 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.
15-8 Class Identifies class of peripheral.

1h Serial port
7-0 Revision Identifies revision of peripheral.

05h Current revision of peripheral.

The I2C peripheral identification register (ICPID2) is shown in Figure 28 and described in Table 21.

Figure 28. I2C Peripheral Identification Register 2 (ICPID2)

31 16
Reserved

R-0

15 8 7 0

Reserved TYPE
R-0 R-05h

LEGEND: R = Read only; -n = value after reset

Table 21. I2C Peripheral Identification Register 2 (ICPID2) Field Descriptions
Bit Field Value Description

31-8 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.
7-0 TYPE Identifies type of peripheral.

05h I2C

SPRUFY3–July 2008 Inter-Integrated Circuit (I2C) Peripheral 39
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


Registers www.ti.com

Inter-Integrated Circuit (I2C) Peripheral40 SPRUFY3–July 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFY3


IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Clocks and Timers www.ti.com/clocks Digital Control www.ti.com/digitalcontrol
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
RFID www.ti-rfid.com Telephony www.ti.com/telephony
RF/IF and ZigBee® Solutions www.ti.com/lprf Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://www.ti.com/clocks
http://www.ti.com/digitalcontrol
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless

	Table of Contents
	Preface
	1 Introduction
	1.1 Purpose of the Peripheral
	1.2 Features
	1.2.1 Features Not Supported

	1.3 Functional Block Diagram
	1.4 Industry Standard(s) Compliance Statement

	2 Peripheral Architecture
	2.1 Bus Structure
	2.2 Clock Generation
	2.3 Clock Synchronization
	2.4 Signal Descriptions
	2.4.1 Input and Output Voltage Levels
	2.4.2 Data Validity

	2.5 START and STOP Conditions
	2.6 Serial Data Formats
	2.6.1 7-Bit Addressing Format
	2.6.2 10-Bit Addressing Format
	2.6.3 Free Data Format
	2.6.4 Using a Repeated START Condition

	2.7 Operating Modes
	2.8 NACK Bit Generation
	2.9 Arbitration
	2.10 Reset Considerations
	2.10.1 Software Reset Considerations
	2.10.2 Hardware Reset Considerations

	2.11 Initialization
	2.12 Interrupt Support
	2.12.1 Interrupt Events and Requests
	2.12.2 Interrupt Multiplexing

	2.13 DMA Events Generated by the I2C Peripheral
	2.14 Power Management
	2.15 Emulation Considerations

	3 Registers
	3.1 I2C Own Address Register (ICOAR)
	3.2 I2C Interrupt Mask Register (ICIMR)
	3.3  I2C Interrupt Status Register (ICSTR)
	3.4 I2C Clock Divider Registers (ICCLKL and ICCLKH)
	3.4.1 I2C Clock Low-Time Divider Register (ICCLKL)
	3.4.2 I2C Clock High-Time Divider Register (ICCLKH)

	3.5 I2C Data Count Register (ICCNT)
	3.6 I2C Data Receive Register (ICDRR)
	3.7 I2C Slave Address Register (ICSAR)
	3.8 I2C Data Transmit Register (ICDXR)
	3.9 I2C Mode Register (ICMDR)
	3.10 I2C Interrupt Vector Register (ICIVR)
	3.11 I2C Extended Mode Register (ICEMDR)
	3.12 I2C Prescaler Register (ICPSC)
	3.13 I2C Peripheral Identification Register (ICPID1)
	3.14 I2C Peripheral Identification Register (ICPID2)




