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ABSTRACT
DSP chips are gaining importance in ultrasound applications as the need for portability
and low power grows. One of the more computationally demanding applications for
ultrasound involves estimating blood flow characteristics using Doppler techniques. The
color Doppler ultrasound mode is used to diagnose many conditions like blood clots,
valve defects, and blocked arteries. This application report looks at mapping typical
color Doppler algorithms onto Texas Instruments’ high performance C64x+™ core. The
algorithms include RF demodulation, wall filtering and flow power, velocity, and
turbulence estimation. This document starts with a general technique for analyzing
algorithm complexity on the C64x+ architecture, then applies this technique to Doppler
processing algorithms, explains their mapping to the C64x architecture, and finally
compares these estimates to actual implementations. Based on these implementations,
it will be shown that these algorithms can run on TI’s C64x-based DSPs using a
fraction of the available processing power.
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DSP chips are gaining importance in medical imaging applications as the push for portability and low
power grows. Ultrasound is one such imaging modality where DSP use has been instrumental in driving
down system costs and fueling innovative applications. The most common operating modes of ultrasound
systems are:
• B (Brightness) mode: Transmits sound waves of a particular frequency into the body of interest and

records the received echoes as a function of time and position. The brightness of each point on the
display represents the amplitude of the sampled signal.

• Color Doppler mode: Similar to B-mode, but transmits multiple pulses (ensemble) and uses the relative
time between received echoes to estimate blood flow characteristics. The most common flow
parameters that are estimated include flow power, direction, velocity and turbulence.

This application report starts off with a general introduction of the color Doppler mode and briefly
introduces the algorithms in Section 2. Section 3 explains a general method of estimating algorithm
complexity on TI’s high performance C64x+ DSP [1] core. Section 4 to Section 7 provides details about
each of the algorithms including algorithmic and implementation details, complexity estimates, and results.
Finally, Section 8 presents the conclusions from this work.

The receive path of a typical ultrasound system is shown in Figure 1. This application report focuses on
algorithms used in the color Doppler mode, which are highlighted in the figure. After passing through the
receiver front end and beamformer, the data is processed by the B-mode imaging blocks and the color
Doppler imaging blocks. The echo outputs from the B-mode blocks and a combination of scan-converted
versions of velocity, turbulence, and power estimates from the color Doppler imaging block are merged in
the tissue flow decision block, before going through final image processing and display.

Figure 1. Receive Path of Typical Ultrasound System in Color Doppler Mode

This application report looks at efficient implementation of the following typical color Doppler algorithms.
• RF demodulation consisting of mixing, filtering, and decimation of echo data
• Wall filtering using a matrix initialized form of IIR filters [5] of demodulated data
• Color flow estimator [6] that estimates velocity, turbulence, and power together
• Flow power estimator that estimates the power of multiple sets (ensembles) of points. Note that this is

also one of the flow parameters that are estimated in algorithm-3, but a separate implementation is
considered since this parameter may be desired in other contexts as well. For example, power
estimates before and after wall filtering can provide an estimate of the clutter power.

C64x is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
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4.1 Algorithm Description
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This section outlines a simple best-case complexity analysis for these routines in order to establish a
lower bound for the complexity (DSP cycles) on the C64x+ core, as shown in Figure 2. Although all the
work is with respect to C64x+ cores, the general methodology carries over to other very long instruction
word (VLIW) architectures as well.

Figure 2. DSP Architecture of TI C64+ Platform

During every clock cycle in the TI C64x+ platform, the instruction fetch, dispatch, and decode units deliver
instructions to the eight functional units that reside in data paths A and B, as shown in Figure 2. Each data
path contains four functional units (L, S, M, and D) and 32 general-purpose registers. For more details
about the architecture, instructions, and mapping of instructions to functional units, see the
TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (SPRU732) [1]. Unless otherwise
noted, every unit produces a result at each clock cycle when pipelined perfectly.

This approach estimates the complexity of the loop kernels that dominate performance and are expected
to take the maximum cycles of these algorithms. It is best-case in that it does not attempt to estimate the
overheads and is a first order approximation of the complexity. Overheads include epilog and prolog of
loop kernels, outer loop operations in nested-loop implementations, etc. To achieve these estimates, the
implementation may need to change the algorithm data path, without affecting performance, to get the
lowest complexity on the C64x+ core. To arrive at these estimates, the most efficient data flow and CPU
instructions are estimated for each of the algorithmic operations. Then, the various units where these
instructions could be mapped to are considered and, finally, the cycles on the unit that are most loaded
are used as the estimate of the algorithm’s complexity. Note that perfect pipelining performance is
assumed. More details on the optimization process can be found in [2], [3], [4].

In the next four sections, complexity estimates obtained using this approach are compared to
implementation results for the typical color Doppler algorithms mentioned earlier. Also the fixed point
implementations will be compared to their floating point counterparts in terms of normalized mean square
error (NMSE) to ensure that performance remains acceptable. The NMSE is computed by normalizing the
mean square error with the average of the floating point reference output.

In color-flow mode, the input to this module is multiple ensembles of scan lines. Assume that there are B
scan line sets and each of the scan line sets consists of N scan lines. Therefore, the ensemble size is N.
Each scan line consists of T RF data samples. In this block, each scan line is processed independently by
first mixing it with sinusoids to produce in-phase (I) and quadrature (Q) components, followed by low pass
filtering (LPF) using a finite impulse response (FIR) filter to prevent aliasing, and finally decimating the
filtered output by a factor, S. Assume that the FIR filter uses (L) taps. Each output scan-line from this
function consists of D (=T/S) decimated points.
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The operations in this module are summarized by the following equations. For a given transducer center
frequency (fc) and front-end sampling frequency fs, the beamformed RF data for each scan line, RT, is first
mixed to create in-phase and quadrature components of the mixed output vector, MIT.

Note that throughout this application report, lower-case letters are used as indexes into quantities whose
maximum values are indicated by their upper-case counterparts, e.g., t is an index into the T RF points of
each scan line. Also upper case letters denote the matrices and vectors (R, M), while their lower case
counterparts (r ,m) denote the individual elements in these matrices/vectors. The subscripts used with
matrices denote their dimensions; whereas, subscripts used with elements denote their positions in the
matrix/vector, i.e., rt denotes the tth element in the R vector.

These mixed outputs are then passed through a filter, F, and down-sampled in a single step, to generate
the decimated output vector ED.

For implementation purposes, it has been assumed that the input R consists of 32-bit signed integers,
while M and E consist of 16-bit signed integers. The sine, cosine values, and filter coefficients are
assumed to be 16-bit signed integers.
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4.2 Mapping to TI C64+ Core
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Two main kernels have been studied using the methodology outlined in Section 3: mixing and decimation.
It can be shown that the mixing operation can be efficiently carried out using reasonably small sine and
cosine tables (< 4 KB), instead of computing these values on the fly. The data flow and intrinsics used for
the mixing are summarized in Figure 3. Note that sine and cosine tables are interlaced and that table
indexing has been omitted from the figure for simplicity.

Figure 3. Mapping RF Demodulation (mixing) to TI C64+ Architecture

Mapping of these instructions to the CPU units and calculating the cycle-usage yields the results in
Table 1. It can be seen that the D units would take the maximum number of cycles for this algorithm.
Therefore, this kernel can be considered to be load-limited and would need approximately T cycles for
processing T RF points, achieving a best-case performance of 1 pipelined kernel cycle-per-output point.
Note that during the implementation phase, additional tricks like further loop unrolling may be needed to
improve pipelined performance and achieve the ideal MIPs benchmark.

Table 1. Complexity Analysis for Mixing Operation
Operation Cycles C64x+ Instruction CPU Units
Loads – Input (T/2)/2 LDDW D1/D2
Loads – Sine/Cosine T/2 LDW D1/D2
Multiplies (2T/2)/2 MPY2IR M1/M2
Adds (Table indexing) 2T/4 ADD L1/L2
Shift T/2 SHR S1/S2
Modulus (Table indexing) T/4 AND L,S
Stores (2T/4)/2 STDW D1/D2
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The mixing kernel is typically followed by the decimation kernel, which does the anti-aliasing filtering apart
from reducing the sampling rate by a factor of S. An efficient way to implement this is the well known
polyphase implementation [7], which is conceptually similar to clocking the mixed input samples into the
two filters, one for the real part and one for the imaginary parts, every cycle of the up-sampled clock, but
clocking out a complex output only every Sth clock cycle every clock in the down-sampled domain. This
block takes T RF input samples and outputs D (=T/S) decimated samples. The data flow and intrinsics
used for the decimation kernel are summarized in Figure 4. Note that since the filtering operation occurs in
the down-sampled domain, it runs for only D, not T, points.

Figure 4. Mapping RF Demodulation (decimation) to TI C64+ Architecture
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5 Wall Filter

5.1 Algorithm Description
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5.2 Mapping to TI C64+ Core
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Table 2 maps the main instructions onto the processor units and shows that the filtering operation would
be multiplier-limited since the M units would need DL/2 cycles to complete its operations while the D, L,
and S units would need lesser cycles to complete theirs.

The above analysis ignores the overhead for circular indexing and filter state updates. It is important to
note that by allowing this function to accept and return the starting and ending states of the filter, the RF
demodulation can be done on portions of scan lines. This feature becomes especially important when
working with systems with limited amounts of local memory.

Table 2. Complexity Analysis for Decimation Operation
Operation Cycles C64x+ Instruction CPU Units
Loads – Input (T/2)/2 LDDW D1/D2
Loads – Filter (L/4)/2 LDDW D1/D2
Multiplies D*L/2 DOTP2 M1/M2
Adds D*(L/2-1) ADD L1/L2
Stores (2D/4)/2 STDW D1/D2

Test code using C and intrinsics was used to achieve pipelined kernel performance of L/2+S
cycles-per-output point, while maintaining NMSE performance within 1e-6 of the floating-point output.

This module does an IIR filtering operation. However, since it needs to filter very short sequences of
ensemble size N, its transient performance is of primary importance. To gain greater control over its
transient performance, a state-space formulation of the IIR filter [5] is used. This filter can be used with
different types of initialization, the most common forms being: zero, step, and projection initialization
schemes. The basic operation done for filtering for each scan-line set is a multiplication of complex input
data matrix, X, with real coefficient matrix, W, given by,

Both of these input and output matrices consist of D rows corresponding to the D depth points and N
columns, corresponding to the N ensembles. Note that the matrix X, is created from the N decimated scan
lines (E), which forms the ensemble.

As this module works with the decimated output from the previous module, its input and output consist of
packed 16-bit real and 16-bit imaginary data. Also the wall filter coefficients are 16-bit integers.

To load filter coefficients efficiently, it is assumed that the filter coefficient matrix is stored column-wise in
memory. With this assumption, the coefficients on the same column of W would lie on adjacent memory
addresses and could be loaded using wide-load instructions for multiplying the rows of the input matrix.
Also, it is assumed that the input and output data are arranged ensemble-by-ensemble, (i.e., all the N
input/output points at a given depth point, d, lie adjacent to each other in memory, before the N
input/output points of the next depth point).
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As shown in the algorithm description, the filtering operation basically consists of a multiplication of a
complex matrix with a real matrix. The data flow and intrinsics used for this kernel are summarized in
Figure 5. Note that multiple such kernels could be run in parallel to use efficient shifting, packing, and
storage instructions in the last stage.

Figure 5. Mapping Wall Filtering to TI C64+ Architecture

Table 3 is obtained by mapping the main instructions onto CPU units. From this analysis, the two M units
would be used the most because they would be used for the two sets (real and imaginary) of 16x16
multiplies. To generate each of the DN complex output points, 2N real multiplies are needed for each
point, taking DN2/2 cycles. The N/2 complex points to be added for each output point would also need N/2
cycles assuming 40-bit additions on L units. Therefore, this algorithm should need DN2/2 cycles for
processing D decimated points translating to a pipelined performance of N/2 cycles per output complex
point.

Test code using C and intrinsics was used to achieve pipelined kernel performance of N/2
cycles-per-output point while maintaining performance, which is within a NMSE target of 1e-6 of the
floating-point output. Note that this module consists of three nested loops: one running over D and the
other two running over N. Such nested loops need to be implemented carefully since only the innermost
loop gets pipelined and the overheads of the inner loops get multiplied as many times as the outer loop is
run. For such algorithms, the complexity estimate may not be as close as it can be with single loop
kernels.
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6 Flow Power Estimator

6.1 Algorithm Description
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6.2 Mapping to TI C64+ Core
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Table 3. Complexity Analysis for Wall Filtering Operation
Operation Cycles C64x+ Instruction CPU Units
Loads – Input DN/4 LDDW D1/D2
Loads – Coefficients N2/2 LDDW D1/D2
Multiplies DN2/2 DOTP2 M1/M2
Adds DN2/2 ADD L1/L2
Stores DN/4 STDW D1/D2

This module is used to compute the power of an ensemble of points. Typically, this function can be used
to calculate the input and output power of the wall filter to compute the signal-clutter ratio or it could be
used for detecting the presence of blood in color Doppler processing. For a complex input matrix
(XDxN = IDxN + j QDxN) where all the matrices are of size DxN, the output vector PD = { pd } is computed as,

The input data to this module consist of packed 16-bit real and imaginary data and the output data are
16-bit real numbers. Again, it can be assumed that the input data is arranged ensemble-by-ensemble.

The data flow used for mapping this algorithm to the TI C64+ architecture is given in Figure 6. This
mapping shows both the outer loops and the inner loops have been unrolled in parallel so as to facilitate
scheduling without imposing large multiplicity constraints on N. In addition, Table 4 shows CPU units
which contain the various instructions. From Table 4, you can see that this algorithm is multiply-limited and
would need DN/2 cycles to process D decimated points translating to a pipelined performance of N/2
cycles/output point.

Test code using C and intrinsics was used to achieve pipelined kernel performance of N/2
cycles-per-output point, matching the benchmarks, while maintaining NMSE performance less than 1e-6
with respect to the floating point output.
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Figure 6. Mapping Flow Power Estimation to TI C64+ Architecture

Table 4. Complexity Analysis for Flow Power Operation
Operation Cycles Instruction CPU Units
Loads – Input DN/4 LDDW D1/D2
Multiplies DN/2 DOTP2 M1/M2
Adds D(N–1)/2 ADD L1/L2
Stores D/8 STDW D1/D2
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7 Flow Parameter Estimator

7.1 Algorithm Description
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7.2 Mapping to TI C64+ Core
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Based on input, Y, this module estimates blood flow velocity, power, and turbulence using
autocorrelation-based techniques. At depth point, d, for computing both its velocity, vd, and turbulence, td,
estimates, it uses the correlations between adjacent ensemble points, cd, and ensemble power, pd, as
shown below,

The module outputs estimates for flow power, velocity, and turbulence. The input, YDxN = {yd,n} consists of
packed 16-bit complex values; the power, velocity, and turbulence output consists of 16-bit real data.

For the purposes of this work, the DSP IQMath library [8] is used for the four quadrant inverse tangent
(_IQNatan2), division (_IQNdiv), and magnitude (_IQNmag) calculations needed for this algorithm. All
these functions use 32-bit inputs to produce 32-bit outputs. Although lower precision may be sufficient for
this application, they are not discussed in this document. The correlation outputs are kept at 32-bits and all
intermediate sums use 40-bit accumulators.

This module consists of three kernels: one for power and correlation, the second one for velocity, and the
last one for turbulence estimates. Figure 7 explains how the correlation and power computation kernel
uses the DSP instructions to achieve its goal, and Table 5 maps the used instructions to CPU units to
arrive at an estimate of the complexity of the kernel. As shown in the table, this kernel is multiply-limited
and needs a minimum of 3D(N–1)/2 cycles for processing D decimated points, The inverse tangent
computation for velocity needs ~32 cycles per depth point using a pipelined implementation of _IQNatan2.
In addition, the turbulence calculation involves using _IQNmag and _IQNdiv functions, taking ~13 and ~11
cycles, respectively, in pipelined implementations. Therefore, the turbulence calculation is expected to
take ~24 cycles per output depth point, yielding a total pipelined performance of 3(N–1)/2 + 56
cycles-per-output point.

Test code using C and intrinsics was used to achieve pipelined kernel performance of 3(N–1)/2 + 51
cycles-per-output point while maintaining NMSE performance less than 1e-6 with respect to the floating
point for all the outputs. Note that the kernel cycles are slightly better than expected since the IQMath
functions provided better performance than their benchmarks.
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Table 5. Complexity Analysis for Correlation and Power Calculations
Operation Cycles C64x+ Instruction CPU Units
Loads DN/4 LDDW D1/D2
Multiplies

D(N–1) DOTP2, DOTPN2 M1/M2• Correlations
D(N–1)/2 DOTP2 M1/M2• Power

Adds
D(N–2) ADD L1/L2• Correlations

D(N–2)/2 ADD L1/L2• Power
Stores D + D/4 STDW D1/D2

Figure 7. Mapping Correlation and Power Computations to TI C64+ Architecture

The commonly used color Doppler algorithms, namely RF demodulation, wall filter, flow power, and flow
parameter estimation, can be mapped on to TI’s C64x+ core. The complexity estimates (lower bounds) of
these algorithms have been estimated for the C64x+ core. The complexity bound is especially tight for
simple loops like the correlation/power computation kernel, but is loose for modules with multiple nested
loops like the wall filter. For example, for D = 128 and N = 8, the correlation/power implementation takes
1371 cycles versus the benchmark of 1344 cycles, while the wall filter implementation takes about 8.9K
cycles versus the benchmark of 4K cycles. However, all the algorithms cycles, consumed by the
innermost kernels, exactly matched the theoretical expectations.
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It was also seen that for small values of N, significant complexity savings can be achieved in the velocity
and turbulence estimation loops by using lower precision and complexity variants of algorithms used for
computing magnitudes, divisions, and inverses of the tangent.

For a color-flow system with frame rate, F, the RF demodulation, wall filter, and color flow algorithms
together would use approximately:

where O is the overhead factor, which is the difference between the estimates and the implementations.
Assuming parameters B = 64, S = 8, L = 64, D = 128, N = 10, F = 30 and O = 2, the kernels would take
approximately ~250 MHz of processing power, or ~25% of a 1GHz DSP.

Therefore, such implementations of the ultrasound algorithms would use a fraction of the available
resources on TI’s high performance DSP chips. Developing such DSP-based systems would allow for an
overall reduction in system cost with respect to ASICs, while adding the flexibility of a programmable
device.
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