CC BY-ND 3.0 — Texas Instruments Incorporated

SmartRFO6EB Board Support Package
Texas Instruments CC2538 Family of Products

User’s Guide

I3 TEXAS

INSTRUMENTS

Literature Number: SWRU327 Copyright © 2013
Texas Instruments Incorporated

www.ti.com

Document License

This work is licensed under the Creative Commons Attribution-NoDerivs 3.0 Unported License (CC BY-ND 3.0). To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd/3.0/legalcode or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California,
94105, USA.

Copyright

Copyright © 2013 Texas Instruments Incorporated. All rights reserved. CC2538 and SmartRF are registered trademarks of Texas Instruments. ARM and
Thumb are registered trademarks and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of others.

APIease be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semicon-
ductor products and disclaimers thereto appears at the end of this document.

Cortex

Texas Instruments I TEXAS

Dot 1% 7960 INSTRUMENTS

http://www.ti.com

=)
w
o
w
=
S
[~
|

Intelligent Processors by ARM

Revision Information

User guide literature numbers from Texas Instruments RF Products start with SWRU. The document revision is indicated by a letter suffix after the
literature number. The initial version of a document does not have a letter suffix (for example SWRU321). The first revision is suffixed A, the second B,
and so on (for example SWRU321B). The literature number for this document is in the document footer.

This document was updated on April 11, 2013 (build 9717).

2 SWRU327 — April 11,2013
CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com Table of Contents

Table of Contents

Document License i ittt e e e e e e e e e e e e 2
Copyright e e e e e e e e e e e e e e e e e 2
Revision Information i e e e e e e s 2
1 Introduction e e e e e e e e e e e e e 5
2 Using the SmartRFOGEB BSP i ittt i e e e e e e e e e e 7
2.1 Introduction L e e e 7
2.2 Usingthe BSP as a precompiled library 8
2.3 Usingthe BSPas Source Files e 9
2.4 Configuring and Recompiling the BSP Library 9
3 BSPBase FUNCtions i i i i e e e e e e e e 11
3.1 Introduction L e 11
3.2 APIFUNCtions e e 11
3.3 Programming Example e 15
4 O Pininterrupt Handler i e e e e e 17
4.1 Introduction e 17
4.2 APIFUNCLONS 17
4.3 Programming Example e 18
5 LEDS . . i i e e e e e e e e e e e e e e e e e e 21
5.1 Introduction 21
5.2 APIFuUNctions e e 21
5.3 Programming Example e 22
6 KeYS & e 25
6.1 Introduction e e e e e e 25
6.2 APIFunctions e 25
6.3 Programming Example e 28
7 Accelerometer e e e e e e e e e e e e e e e e e e 31
7.1 Introduction L e e e e e e 31
7.2 APIFunctions e 31
7.3 Programming Example e 35
8 Ambient Light Sensoro e e e e e e 37
8.1 Introduction L. e e 37
8.2 APIFunctions e 37
8.3 Programming Example 38
9 107 39
9.1 Introduction L e e 39
9.2 APIFUNCioNs e 39
9.3 Programming Example e 54
10 MicroSDCardReader i i i i i i i it et e e e e e e e 55
10.1 Introduction L e e 55
10.2 APIFuNctions e e 55
10.3 Programming Example e 58
11 UART Backchannel i e e e e e e e e e e e 59
11.1 Introduction o L e e 59
11.2 APLFUNCLIONS 59
11.3 Programming Example e 63
SWRU327 — April 11, 2013 3

CC BY-ND 3.0 — Texas Instruments Incorporated

Table of Contents www.ti.com

12 References i i i i i i i i e e e e e e e e e e e e e e e e e e 65
13 Document History i i i e e e e e e e e e e 67
4 SWRU327 — April 11,2013

CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com

Introduction

1

Introduction

The SmartRFO6EB Board Support Package (BSP) for CC2538 from Texas Instruments is a set
of drivers for accessing the peripehrals found on the SmartRFO6EB with the CC2538 family of
ARM® Cortex™-M based devices.

The SmartRFO6EB BSP uses the CC2538 peripheral driver library (driverlib).

While the SmartRFO6EB BSP drivers are not drivers in the pure operating system sense (that is,
they do not have a common interface and do not connect into a global device driver infrastructure),
they do provide a mechanism that makes it easy to use the SmartRFO6EB and its peripherals.

The capabilities and organization of the drivers are governed by the following design goals:

m They are written entirely in C language except where absolutely not possible.
m They demonstrate how to use the peripheral in its common mode of operation.
m They are easy to understand.

m They are reasonably efficient in terms of memory and processor usage.

m They are as self-contained as possible.

m Where possible, computations that can be performed at compile time are done there instead
of at run time.

m They can be built with more than one tool chain.
Some consequences of these design goals are:

m The drivers are not necessarily as efficient as they could be (from a code size and/or execution
speed point of view). While the most efficient piece of code for operating a peripheral would
be written in assembly language and custom tailored to the specific requirements of the appli-
cation, further size optimizations of the drivers would make them more difficult to understand.

m The drivers do not support the full capabilities of the hardware. Some of the peripherals pro-
vide complex capabilities which cannot be used by the drivers in this library, though the existing
code can be used as a reference upon which to add support for the additional capabilities.

For many applications, the drivers can be used as is. But in some cases, the drivers must to
be enhanced or rewritten to meet the functionality, memory, or processing requirements of the
application. If so, the existing driver can be used as a reference on how to operate the peripheral.

The SmartRFO6EB BSP is available for all devices in the CC2538 family.

The following tool chains are supported:

= |IAR Embedded Workbench® (IAR)
m Tl Code Composer Studio™ (CCS)

SWRU327 — April 11, 2013

CC BY-ND 3.0 — Texas Instruments Incorporated

Introduction www.ti.com

Source Code Overview

A brief overview of the organization of the SmartRFO6EB Board Support Package library source
code follows. All paths in this section are given relative to the bsp/srf06eb_cc2538 folder.

examples/ This directory holds SmartRFO6EB BSP examples.

drivers/bin/ This directory holds the precompiled library files for different IDEs.

drivers/source/ This directory holds the source code for the drivers, including header
files.

drivers/projects/ This directory holds the IDE project files for compiling the library files.

Trademark Attribution

m ARM® — ARM Physical IP, Inc.

m Code Composer Studio™ — Texas Instruments
m Cortex™-M3 — ARM Limited

m [2C™ — Philips Semiconductor Corp

m |AR Embedded Workbench® — IAR Systems
m SPI™ — Motorola

6 SWRU327 — April 11,2013
CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com

Using the SmartRFO6EB BSP

2

2.1

Using the SmartRFO6EB BSP

It OAUCH ON . e e aa e 7
Using the BSP as a precompiled [IDrary e 8
Using the BSP as SOUICE fileS e 9
Configuring and recompiling the BSP library 9

Introduction

The SmartRFO6EB BSP for CC2538 family can be used as a library, bsp. 1ib, or by including the
.c and .h source files directly into your project. The following sections will go through how to use
the SmartRFO6EB Board Support Package as a library, and directly from source files, respectively.

The SmartRFO6EB BSP uses the CC2538 peripheral driver library to access the CC2538 inter-
nal peripheral modules. Therefore, the CC2538 peripheral driver library must also be included in
projects using the SmartRFO6EB BSP. See Chapter 12 for more information.

The SmartRFO6EB BSP for the CC2538 family is released under a standard 3-clause BSD license.

Copyright (C) 2013 Texas Instruments Incorporated - http://www.ti.com/

m Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

m Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

m Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

Neither the name of Texas Instruments Incorporated nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

SWRU327 — April 11, 2013 7

CC BY-ND 3.0 — Texas Instruments Incorporated

http://www.ti.com/

Using the SmartRFO6EB BSP www.ti.com

2.2

Using the BSP as a precompiled library

The SmartRFO6EB BSP comes as a precompiled library file, bsp.1ib. The bsp. 1ib library file is
in the IDE subfolder of bsp/srf06eb_cc2538/drivers/bin.

2.2.1 |IAR Embedded Workbench
All paths in this section are given relative to the bsp/srf06eb_cc2538 folder. The following steps
have been tested using IAR EWARM version 6.40.
The predefined IAR variable $PROJ_DIRS, which gives the absolute path of the .ewp file of the
project is very handy when defining include paths and library paths.
To use the precompiled bsp.1ib in IAR Embedded Workbench for ARM, the project must be set
up with the correct include paths. In IAR, the include paths are set under Project > Options >
C/C++ Compiler > Preprocessor.
B drivers/source Path to BSP API definitions
B ../../driverlib/cc2538/source Path to driverlib API definitions
m../../driverlib/cc2538/inc Path to CC2538 register name definitions
The project must be configured to use the correct libraries. This can be set under Project > Options
> Linker > Library.
B drivers/bin/iar/bsp.lib
m../../driverlib/cc2538/bin/iar/driverlib.1lib
In the application source file, include the header files containing the API functions necessary for the
application; for example:
#include <bsp.h> // Base API and board defines
#include <bsp_led.h> // LED API
2.2.2 Code Composer Studio
All paths in this section are given relative to the bsp/srf06eb_cc2538 folder. The following steps
have been tested using CCS release 5.2.0.
The predefined CCS variable ${ProjDirPath}, which gives the absolute path of the project, is
very handy when defining include paths and library paths.
To use the precompiled bsp.1ib in Code Composer Studio, the project must be set up with the
correct include paths. In CCS, the include paths are set under Project > Properties > CCS Build >
ARM Compiler > Include Options.
®m drivers/source Path to BSP API definitions
m../../driverlib/cc2538/source Path to driverlib API definitions
m../../driverlib/cc2538/inc Path to CC2538 register name definitions
8 SWRU327 — April 11,2013

CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com

Using the SmartRFO6EB BSP

2.3

2.4

The project must be configured to use the correct libraries. This can be set under Project > Prop-
erties > CCS Build > ARM Linker > File Search Path. Add bsp.1lib and driverlib.1lib under
Include library file or command file as input.

Add the following directories under Add <dir> to library search path

B drivers/bin/ccs
m . ./../driverlib/cc2538/bin/ccs

In the application source file, include the header files containing the API functions necessary for the
application; for example:

#include <bsp.h> // Base API and board defines
#include <bsp_led.h> // LED API

Using the BSP as Source Files

All paths in this section are given relative to the bsp/srf06eb_cc2538 folder. To use the BSP in
a project, the project must be set up with the correct include paths. The necessary include paths
are as follows:

B drivers/source Path to BSP API definitions

m../../driverlib/cc2538/source Path to driverlib API definitions
m../../driverlib/cc2538/inc Path to CC2538 register name definitions

Source files are included to the IAR or CCS project by selecting Project > Add files ...

The SmartRFO6EB BSP uses the CC2538 peripheral driver library. To include the precompiled
CC2538 peripheral driver library file, driverlib.1ib, to the project, follow the steps in Section
2.2.

To include the CC2538 peripheral driver library source files to the project, add the .c files in
../../driverlib/cc2538/source listed above.

Configuring and Recompiling the BSP Library

The IDE projects for building the SmartRFO6EB BSP library file, bsp.1ib, are found in the IDE
subfolder under srf06eb_cc2538/drivers/projects. Inthe same IDE folder, there are con-
figuration files, bsp_x. c£g, for configuring the BSP library.

To configure which drivers are included in bsp. 1ib, first alter the bsp_x. cfg configuration file to
suit your needs and then recompile the BSP library project.

SWRU327 — April 11, 2013 9

CC BY-ND 3.0 — Texas Instruments Incorporated

Using the SmartRFO6EB BSP www.ti.com

10 SWRU327 — April 11,2013
CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com

BSP Base Functions

3

3.1

3.2

3.2.1

BSP Base Functions

I OAUCH ON ... e e e e e e e s 11
AP FUNCHIONS .. e e e e 11
Programming EXamIPIe ... e 15
Introduction

The SmartRFO6EB BSP Base functions provide a set of functions for initializing the CC2538 and
SmartRFO6EB for operation, configuring the SPI interface to the SmartRFO6EB peripherals, and
controlling the SmartRFO6EB 3.3-V domain.

The SmartRFO6EB Board Support Pacakge base module source files are contained in
bsp/srf06eb_cc2538/drivers.

®m source/bsp.c contains the function implementations for CC2538 on SmartRFO6EB.
m source/bsp.h contains the API definitions for use by applications.

API Functions

Functions

void bsp3V3DomainDisable (void)

void bsp3V3DomainDisableForced (void)

void bsp3V3DomainEnable (void)

uint8_t bsp3V3DomainEnabled (void)

void bspAssert (void)

void bsplnit (uint32_t ui32SysClockSpeed)

uint32_t bspSpiClockSpeedGet (void)

void bspSpiClockSpeedSet (uint32_t ui32ClockSpeed)
void bspSpilnit (uint32_t ui32SpiClockSpeed)

Detailed Description

The SmartRFO6EB BSP base API is broken into three main groups of functions:

m Those that initialize the CC2538 /O for use
m Those that deal with the SPI interface to the SmartRFO6EB peripherals
m Those that deal with the SmartRFO6EB 3.3-V domain

Function bsplnit() configures the CC2538 main clock and its I/O for operation on the SmartRFO6EB.
bsplnit() should be the first function called when using the SmartRFO6EB BSP.

The following functions are used for configuring the SPI interface between the SmartRFO6EB pe-
ripherals and the CC2538:

SWRU327 — April 11, 2013 11

CC BY-ND 3.0 — Texas Instruments Incorporated

BSP Base Functions www.ti.com

m bspSpilnit()
m bspSpiClockSpeedSet()
m bspSpiClockSpeedGet()

The following functions control the 3.3-V domain on the SmartRFO6EB (LCD and SD Card Reader):

m bsp3V3DomainEnable()
m bsp3V3DomainDisable()
m bsp3V3DomainDisableForced()
m bsp3V3DomainEnabled()

Function bspAssert() is provided as a utility function.

3.2.2 Function Documentation
3.2.2.1 bsp3V3DomainDisable
This function disables the 3.3-V domain on SmartRFO6EB. This function is "soft" and only disables
the 3.3-V domain if counter variable i8Bsp3V3DomainEnableCount is 1 or 0. The function assumes
the 3.3-V domain enable pin is configured as output by, for example, bsplnit().
Prototype:
void
bsp3V3DomainDisable (void)
Description:
This function decrements i8Bsp3V3DomainEnableCount and disables the 3.3-V domain if
i8Bsp3V3DomainEnableCount is less than or equal to 0. If i8Bsp3V3DomainEnableCount is
greater than 0 after decrement, function bsp3V3DomainEnable() has been called more times
than this function, and the 3.3-V domain will not be disabled. To disable the 3.3-V domain irre-
spective of the value of i8Bsp3V3DomainEnableCount, use bsp3V3DomainDisableForced().
See also:
bsp3V3DomainEnable(), bsp3V3DomainDisableForced()
Returns:
None
3.2.2.2 Dbsp3V3DomainDisableForced
This function disables the 3.3-V domain on SmartRFO6EB. The function assumes the 3.3-V domain
enable pin is configured as output by, for example, bsplnit(). The 3.3-V domain needs approximately
400 us to fall below 0.5 V.
Prototype:
void
bsp3V3DomainDisableForced (void)
See also:
bsp3V3DomainEnable(), bsp3V3DomainDisable()
12 SWRU327 — April 11,2013

CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com BSP Base Functions
Returns:
None
3.2.2.3 void bsp3V3DomainEnable (void)
This function enables the 3.3-V domain on SmartRFO6EB. The LCD and SD card reader are pow-
ered by the 3.3-V domain. This functon increments a counter variable each time it is called. The
function assumes the 3.3-V domain enable pin is configured as output by, for example, bsplnit().
The 3.3-V domain needs up to approximately 400 us to settle when enabled.
See also:
bsp3V3DomainDisable(), bsp3V3DomainDisableForced()
Returns:
None
3.2.2.4 uint8_t bsp3V3DomainEnabled (void)
This function returns the current state of the 3.3-V domain.
Returns:
Returns 1 if 3.3-V domain is enabled
Returns 0 if 3.3-V domain is disabled
3.2.2.5 void bspAssert (void)
Assert function. Eternal loop that blinks all LEDs quickly. Function assumes LEDs to be initialized
by, for example, bsplnit().
Returns:
None
3.2.2.6 void bsplnit (uint32_t ui32SysClockSpeeq)
This function initializes the CC2538 clocks and I/O for use on SmartRFO6EB.
The function assumes that an external crystal oscillator is available to the CC2538. The CC2538
system clock is set to the frequency given by input argument ui32SysClockSpeed. The I/O system
clock is set configured to the same value as the system clock.
If the value of ui32SysClockSpeed is invalid, the system clock is set to the highest allowed value.
Parameters:
ui32SysClockSpeed is the system clock speed in Hz; it must be one of the following:
m SYS_CTRL_32MHZ
m SYS_CTRL_16MHZ
m SYS_CTRL_8MHZ
SWRU327 — April 11, 2013 13

CC BY-ND 3.0 — Texas Instruments Incorporated

BSP Base Functions www.ti.com

3.2.2.7

3.2.2.8

3.2.2.9

= SYS_CTRL_4MHZ
= SYS_CTRL_2MHZ
= SYS_CTRL_1MHZ
= SYS_CTRL_500KHZ
= SYS_CTRL_250KHZ

Returns:
None

uint32_t bspSpiClockSpeedGet (void)

This function returns the clock speed of the BSP SPI interface. It is assumed that the BSP SPI SSI
module runs off the 1/O clock.

Returns:
Returns the SPI clock speed in Hz

void bspSpiClockSpeedSet (uint32_t ui32ClockSpeed)

This function configures the SPI interface to the given clock speed, Motorola mode with clock idle
high and data valid on the second (rising) edge. For proper SPI function, the SPI interface must
first be initialized using bspSpilnit().

Warning:
Limitations apply to the allowed values of ui32ClockSpeed. Please refer to device’s driverlib
documentation.

Parameters:
ui32ClockSpeed is the SPI clock speed in Hz

Returns:
None

void bspSpilnit (uint32_t ui32SpiClockSpeed)

This function initializes SPI interface. The SPI is configured to Motorola mode with clock idle high
and data valid on the second (rising) edge. The SSI module uses the I/O clock as clock source (1/0O
clock frequency set in bsplnit()).

Input argument ui32SpiClockSpeed must obey the following criteria:

m ui32SpiClockSpeed = srcClk / 2 where n is integer, n >= 2, and srcClk is the clock frequency
set by bsplnit().

Parameters:
ui32SpiClockSpeed is the SPI clock speed in Hz

Returns:
None

14

SWRU327 — April 11,2013
CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com BSP Base Functions

3.3 Programming Example

Software examples for the SmartRFO6EB BSP are in bsp/srf06eb_cc2538/examples .

The following example initializes the CC2538 to its default clock speed and configures the neces-
sary CC2538 I/0. The CC2538 SPI interface to the SmartRFO6EB SPI peripherals is initialized.

#include "bsp.h"

//

// Initialize the cc2538 clock and srfO6eb I/O
//

bspInit (BSP_SYS_CLK_SPD) ;

//
// Initialize the SPI interface to its default speed

//
bspSpilnit (BSP_SPI_CLK_SPD);

SWRU327 — April 11, 2013 15
CC BY-ND 3.0 — Texas Instruments Incorporated

BSP Base Functions www.ti.com

16 SWRU327 — April 11,2013
CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com I/O Pin Interrupt Handler

4 I/O Pin Interrupt Handler

INtrOAUCH ON .. e 17
AP FUNCHIONS .. e e 17
Programming EXamIPIe ... e 18

4.1 Introduction

The SmartRFO6EB BSP includes an I/O pin interrupt handler. The I/O pin interrupt handler is an
extension to functionality in the CC2538 peripheral driver library, allowing GPIO pins on the same
GPIO port to have different interrupt handlers.

The I/O pin interrupt handler registers a generic interrupt service routine (ISR) to the interrupt vector
of the GPIO port. The generic ISR calls the appropriate interrupt handler for each GPIO pin.

The driver files are in bsp/srf06eb_cc2538/drivers.

B source/io_pin_int.c contains the function implementations for CC2538 on
SmartRFO6EB.

®m source/io_pin_int.h contains the API definitions for use by applications.

4.2 API Functions

Functions

m void ioPinIntRegister (uint32_t ui32Base, uint8_t ui8Pins, void (xpfnintHandler)(void))
m void ioPinIntUnregister (uint32_t ui32Base, uint8_t ui8Pins)

4.2.1 Detailed Description

The /O pin interrupt handler has two functions, ioPinIntRegister() and ioPinIntUnregister().

The 1/O pin interrupt handler module may be excluded from the SmartRFO6EB BSP by defining
I0_PIN_INT_EXCLUDE.

Warning:
Define 10_PIN_INT_EXCLUDED should be used with care as other SmartRFO6EB BSP
modules use the I/O pin interrupt handler. For more information on how to configure the
SmartRFO6EB BSP for CC2538 precompiled library, see Section 2.4.

SWRU327 — April 11, 2013 17
CC BY-ND 3.0 — Texas Instruments Incorporated

/O Pin Interrupt Handler www.ti.com

422

4221

4222

4.3

Function Documentation

ioPinIntRegister

Register an interrupt handler to the GPIO pin (or pins) specified by bitmask ui8Pins on GPIO port
given by ui32Base. This function registers a general ISR to the GPIO port and then assigns the
ISR specified by pfnintHandler to the given pins.

Prototype:
void
ioPinIntRegister (uint32_t ui32Base,
uint8_t ui8Pins,
void (xpfnIntHandler) (void))

Parameters:
ui32Base is the base address of the GPIO port.

ui8Pins is the bit-packed representation of the pin (or pins).
pfnintHandler is a pointer to the interrupt handler function.

Returns:
None

void ioPinIntUnregister (uint32_t ui32Base, uint8_t ui8Pins)

Unregister the interrupt handler to GPIO pin (or pins) specified by bitmask ui8Pins on GPIO port
ui32Base.

Parameters:
ui32Base is the base address of the GPIO port.

ui8Pins is the bit-packed representation of the pin (or pins).

Returns:
None

Programming Example

The following code example shows how to register function mylsr() as the interrupt handler for
rising edge interrupts on GPIO port A pin 3. For examples using the 1/O pin interrupt handler, see
bsp/srf06eb_cc2538/examples/keys.

//

// Assuming interrupts are disabled

//

//

// Register interrupt handler myIsr () to GPIO port A pin 3
//

ioPinIntRegister (GPIO_A_BASE, GPIO_PIN_3, &mylIsr);

18

SWRU327 — April 11,2013
CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com I/O Pin Interrupt Handler
//
// Set interrupt type to rising edge (driverlib function)
//
GPIOIntTypeSet (GPIO_A_BASE, GPIO_PIN_3, GPIO_RISING_EDGE);
//
// Enable pin interrupt (driverlib function)
//
GPIOPinIntEnable (GPIO_A_BASE, GPIO_PIN_3);
//
// Enable master interrupt (driverlib function)
//
IntMasterEnable () ;
SWRU327 — April 11, 2013 19

CC BY-ND 3.0 — Texas Instruments Incorporated

I/O Pin Interrupt Handler

www.ti.com

20

CC BY-ND 3.0 — Texas Instruments Incorporated

SWRU327 — April 11,2013

www.ti.com

LEDs

5

5.1

5.2

5.2.1

5.2.2

5.2.21

LEDs

I OAUCH ON ... e e e 21
AP FUNCHIONS .. e e e e e 21
Programming EXamIpIe 22
Introduction

The SmartRFO6EB has 4 LEDs that can be controlled from the CC2538. The SmartRFO6EB BSP
LED driver provides functionality for setting, clearing, and toggling these LEDs. The LEDs can be
accessed using defines BSP_LED_1 through BSP_LED_4. Define BSP_LED_ALL is an ORed
bitmask of all LEDs on the SmartRFO6EB accessible from the CC2538.

The driver files are located in bsp/srf06eb_cc2538/drivers.

®m source/bsp_led.c contains the function implementations for CC2538 on SmartRFO6EB.
m source/bsp_led.h contains the API definitions for use by applications.

API Functions

Functions

m void bspLedClear (uint8_t ui8Leds)
m void bspLedinit (void)

m void bsplLedSet (uint8_t ui8Leds)

m void bspLedToggle (uint8_t ui8Leds)

Detailed Description

The functionality found in bspLedInit() is also performed in the BSP initialization function, bsplnit().
It is therefore not necessary to call bspLedinit() if bsplnit() has already been called.

Function Documentation

bspLedClear

This function clears LED(s) specified by ui8Leds. This function assumes that LED pins have been
initialized by, for example, bspLedinit().

Prototype:
void
bspLedClear (uint8_t ui8Leds)

SWRU327 — April 11, 2013 21

CC BY-ND 3.0 — Texas Instruments Incorporated

LEDs

www.ti.com

5.2.2.2

5.2.2.3

5.2.2.4

5.3

Parameters:
ui8Leds is an ORed bitmask of LEDs (for example BSP_LED_1).

Returns:
None

void bspLedinit (void)

This function initializes GPIO pins connected to LEDs. LEDs are initialized to be off. The function
bsplnit() does the same LED initialization as this function.

Returns:
None

void bspLedSet (uint8_t ui8Leds)

This function sets LED(s) specified by ui8Leds. The function assumes that LED pins have been
initialized by, for example, bspLedinit().

Parameters:
ui8Leds is an ORed bitmask of LEDs (for example BSP_LED_1).

Returns:
None

void bspLedToggle (uint8_t ui8Leds)

This function toggles LED(s) specified by ui8Leds. The function assumes that LED pins have been
initialized by, for example, bspLedInit().

Parameters:
ui8Leds ORed bitmask of LEDs (for example BSP_LED_1).

Returns:
None

Programming Example

The following example shows how to use the BSP LED API to initialize the LEDs and to turn on an
LED. For more LED code examples, see bsp/srf06eb_cc2538/examples/leds.

//

// Initialize the SmartRFO06EB LEDs as off.
//

bspLedInit () ;

22

SWRU327 — April 11,2013
CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com LEDs

//

// Turn on LED 1 and 2.

//

bspLedSet (BSP_LED_1 | BSP_LED_2);

SWRU327 — April 11, 2013 23
CC BY-ND 3.0 — Texas Instruments Incorporated

LEDs

www.ti.com

24

CC BY-ND 3.0 — Texas Instruments Incorporated

SWRU327 — April 11,2013

www.ti.com

Keys

6

6.1

6.2

6.2.1

Keys

I OAUCH ON ... e e e 25
AP FUNCHIONS .. e e e e e 25
Programming EXamIpIe 28
Introduction

The SmartRFO6EB has 5 keys for interfacing the CC2538. The keys can be accessed using de-
fines BSP_KEY_1 through BSP_KEY_5. The keys can also be accessed using more user-friendly
defines such as BSP_KEY_LEFT and BSP_KEY_SELECT. Define BSP_KEY_ALL is an ORed
bitmask of all keys on the SmartRFO6EB accessible from the CC2538.

The driver files are in bsp/srf06eb_cc2538/drivers.

m source/bsp_key.c contains the function implementations for CC2538 on SmartRFO6EB.
m source/bsp_key.h contains the API definitions for use by applications.

API Functions

Functions

uint8_t bspKeyGetDir (void)

void bspKeylnit (uint8_t ui8Mode)

void bspKeyIntClear (uint8_t ui8Keys)

void bspKeylIntDisable (uint8_t ui8Keys)

void bspKeylIntEnable (uint8_t ui8Keys)

void bspKeyIntRegister (uint8_t ui8Keys, void (xpfnHandler)(void))
void bspKeyIntUnregister (uint8_t ui8Keys)

uint8_t bspKeyPushed (uint8_t uiBReadMask)

Detailed Description

The SmartRFO6EB BSP key driver is by default interrupt driven and uses the CC2538 watchdog
timer for key debounce. Alternatively, the key driver may use polling and active state software
debounce.

To configure the key driver as interrupt driven, pass BSP_KEY_MODE_ISR as argument to bsp-
Keylnit(). To configure the BSP key driver to use polling, pass BSP_KEY_MODE_POLL as argu-
ment.

If the key driver is initialized using BSP_KEY_MODE_POLL, functions bspKeyPushed() and bsp-
KeyGetDir() will poll the CC2538 I/O pins connected to the keys. In this case, functions with prefix
bspKeylInt do nothing.

SWRU327 — April 11, 2013 25

CC BY-ND 3.0 — Texas Instruments Incorporated

Keys

www.ti.com

The key driver may be excluded from the SmartRFO6EB BSP by defining BSP_KEY_EXCLUDE.
For more information on how to configure the SmartRFO6EB BSP for CC2538 precompiled library,
see Section 2.4.

6.2.2 Function Documentation
6.2.2.1 bspKeyGetDir
This function reads the directional event. If multiple keys are registered as "pressed", this function
will only return the directional event of the first key. Remaining key events will be ignored.
Prototype:
uint8_t
bspKeyGetDir (void)
See also:
bspKeyPushed()
Returns:
Returns BSP_KEY_EVT_LEFT if LEFT key has been pressed.
Returns BSP_KEY_EVT_RIGHT if RIGHT key has been pressed.
Returns BSP_KEY_EVT_UP if UP key has been pressed.
Returns BSP_KEY_EVT_DOWN if DOWN key has been pressed.
Returns BSP_KEY_EVT_NONE if no key has been pressed.
6.2.2.2 void bspKeyInit (uint8_t ui8Mode)
This function initializes key GPIO as input pullup and disables interrupts. If ui8Mode is
BSP_KEY_MODE_POLL, key presses are handled using polling and active state debounce. Func-
tions starting with bspKeylInt then do nothing.
If uiSMode is BSP_KEY_MODE_ISR, key presses are handled by interrupts, and debounce is
implemented using a timer.
Parameters:
ui8Mode is the operation mode; must be one of the following:
m BSP_KEY_MODE_POLL for polling-based handling
m BSP_KEY_MODE_ISR for interrupt-based handling
Returns:
None
6.2.2.3 void bspKeylIntClear (uint8_t ui8Keys)
This function clears interrupt flags on selected key GPIOs.
26 SWRU327 — April 11,2013

CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com Keys

Note:
If bspKeylnit() was initialized with argument BSP_KEY_MODE_POLL, this function does noth-
ing.

Parameters:
ui8Keys is an ORed bitmask of keys (for example BSP_KEY_1).

Returns:
None

6.2.2.4 void bspKeyIntDisable (uint8_t ui8Keys)

This function disables interrupts on specified key GPIOs.

Note:
If bspKeyInit() was initialized with argument BSP_KEY_MODE_POLL, this function does noth-
ing.

Parameters:
ui8Keys is an ORed bitmask of keys (for example BSP_KEY_1).

Returns:
None

6.2.2.5 void bspKeyIntEnable (uint8_t ui8Keys)

This function enables interrupts on specified key GPIO pins.

Note:
If bspKeylnit() was initialized with argument BSP_KEY_MODE_POLL, this function does noth-
ing.

Parameters:
ui8Keys is an ORed bitmask of keys (for example BSP_KEY_1).

Returns:
None

6.2.2.6 void bspKeyIntRegister (uint8_t ui8Keys, void(x)(void) pfnHandler)

This function registers a custom ISR to keys specified by ui8Keys.

Note:
If bspKeylnit() was initialized with argument BSP_KEY_MODE_POLL, this function does noth-
ing.

Parameters:
ui8Keys is an ORed bitmask of keys (for example BSP_KEY_1).

pfnHandler is a void function pointer to ISR.

SWRU327 — April 11, 2013 27
CC BY-ND 3.0 — Texas Instruments Incorporated

Keys

www.ti.com

6.2.2.7

6.2.2.8

6.3

Returns:
None

void bspKeylIntUnregister (uint8_t ui8Keys)

This function clears the custom ISR from keys specified by ui8Keys.

Note:
If bspKeylnit() was initialized with argument BSP_KEY_MODE_POLL, this function does noth-
ing.

Parameters:
ui8Keys is an ORed bitmask of keys (for example BSP_KEY_1).

Returns:
None

uint8_t bspKeyPushed (uint8_t ui8ReadMask)

This function returns a bitmask of keys pushed.

Note:
If keys are handled using polling (BSP_KEY_MODE_POLL), the returned bitmask will
never contain a combination of multiple key bitmasks, for example, (BSP_KEY_LEFT
|BSP_KEY_UP). Furthermore, in this case argument ui8ReadMask is ignored.

Parameters:
ui8ReadMask is a bitmask of keys to read. Read keys are cleared and new key presses can
be registered. Use BSP_KEY_ALL to read status of all keys.

Returns:
Returns bitmask of pushed keys

Programming Example

The following code example initializes the SmartRFO6EB keys and toggles an LED if either
the UP or DOWN key on SmartRFO6EB is pressed. For more key code examples, see
bsp/srf06eb_cc2538/examples/keys.

#include <bsp.h>
#include <bsp_key.h>
#include <interrupt.h> // Access to driverlib IntMasterEnable ()

//
// Initialize keys (interrupt driven with watchdog timer debounce)

//
bspKeyInit (BSP_KEY_ISR);

28

SWRU327 — April 11,2013
CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com Keys

//

// Enable interrupts on UP/DOWN key and global
// interrupts (driverlib function)

//

bspKeyIntEnable (BSP_KEY_UP|BSP_KEY_ DOWN) ;
IntMasterEnable () ;

while (1)
{
if (bspKeyPushed (BSP_KEY_UP |BSP_KEY_ DOWN))
{
bspLedToggle (BSP_LED_1) ;

SWRU327 — April 11, 2013 29
CC BY-ND 3.0 — Texas Instruments Incorporated

Keys

www.ti.com

30

CC BY-ND 3.0 — Texas Instruments Incorporated

SWRU327 — April 11,2013

www.ti.com

Accelerometer

7

7.1

7.2

Accelerometer

I OAUCH ON ... e e e 31
AP FUNCHIONS .. e e e e e 31
Programming EXamIpIe 35
Introduction

The accelerometer on the SmartRFO6EB is a BMA250 3-axis digital accelerometer. The
SmartRFO6EB BSP drivers provides a set of functions for configuring and accessing the accelerom-
eter.

The driver files are in bsp/srf06eb_cc2538/drivers.

m source/acc_srfO6eb.c contains the function implementations for CC2538 on
SmartRFO6EB.

m source/acc_bma250.h contains the API definitions for use by applications and accelerom-
eter register definitions.

Accelerometer register definitions are prefixed using ACC__ (for example ACC_CHIPID).

API Functions

Functions

m void accDisable (void)

m void acclnit (void)

void acclntClear (uint8_t ui8Pins)

void acclntDisable (uint8_t ui8Pins)

void acclIntEnable (uint8_t ui8Pins)

void acclntRegister (uint8_t ui8Pins, void (xpfnHandler)(void))

void accintTypeSet (uint8_t ui8Pins, uint32_t ui32IntType)

void acclIntUnregister (uint8_t ui8Pins)

void accReadData (int16_t «pi16XVal, int16_t «pi16YVal, int16_t xpi16ZVal)
void accReadReg (uint8_t ui8Addr, uint8_t xpui8Buf, uint8_t ui8Len)

void accWriteReg (uint8_t ui8Addr, const uint8_t «pui8Buf, uint8_t ui8Len)

7.2.1 Detailed Description
The accelerometer APl is broken into two groups of functions: those that access the accelerometer,
and those that deal with interrupts from the accelerometer on the CC2538.
The following functions configure and access the accelerometer:

SWRU327 — April 11, 2013 31

CC BY-ND 3.0 — Texas Instruments Incorporated

Accelerometer www.ti.com

acclnit()

accDisable()

accReadReqg()

accWriteReg()

accReadData()
The following functions configure accelerometer interrupts:

m acclntRegister()
m acclntUnregister()
m accIntEnable()
m acclntDisable()
m acclntClear()
m accintTypeSet()
The accelerometer driver may be excluded from the SmartRFO6EB BSP by defining

ACC_EXCLUDE. For more information on how to configure the SmartRFO6EB BSP for CC2538
precompiled library, see Section 2.4.

7.2.2 Function Documentation
7.2.2.1 accDisable
This function disables the accelerometer by turning off its power. This function assumes the ac-
celerometer PWR pin is already configured as output by, for example, acclnit().
Prototype:
void
accDisable (void)
Returns:
None
7.2.2.2 void acclnit (void)
This function initializes the accelerometer. This must be run before you can use the accelerome-
ter. The function assumes that the SPI interface has already been initialized using, for example,
bspSpilnit().
Returns:
None
32 SWRU327 — April 11,2013

CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com

Accelerometer

7.2.2.3

7.2.2.4

7.2.2.5

7.2.2.6

void acclIntClear (uint8_t ui8Pins)

This function clears interrupt flag on GPIO pins connected to accelerometer.

Parameters:
ui8Pins is a bitpacked bitmask of accelerometer interrupt pins; it can be an ORed combination
of the following values:

m BSP_ACC_INT1
m BSP_ACC_INT2

Returns:
None

void acclintDisable (uint8_t ui8Pins)

This function disables interrupts on GPIO pins connected to accelerometer.

Parameters:
ui8Pins is a bitpacked bitmask of accelerometer interrupt pins; it can be an ORed combination
of the following values:

m BSP_ACC_INT1
m BSP_ACC_INT2

Returns:
None

void accintEnable (uint8_t ui8Pins)

This function enables interrupts on GPIO pins connected to accelerometer.

Parameters:
ui8Pins is a bitpacked bitmask of accelerometer interrupt pins; it can be an ORed combination
of the following values:

m BSP_ACC_INT1
m BSP_ACC_INT2

Returns:
None

void acclintRegister (uint8_t ui8Pins, void(x)(void) pfnHandler)

This function registers a custom interrupt handler to the GPIO pins specified by ui8Pins.

Parameters:
ui8Pins is a bitpacked bitmask of accelerometer interrupt pins; it can be an ORed combination
of the following values:

m BSP_ACC_INT1

SWRU327 -

April 11,2013 33
CC BY-ND 3.0 — Texas Instruments Incorporated

Accelerometer www.ti.com

m BSP_ACC_INT2
pfnHandler is a pointer to the interrupt handler function.

Returns:
None

7.2.2.7 void accIntTypeSet (uint8_t ui8Pins, uint32_t ui32IntType)
This function sets the interrupt type for the GPIO pins connected to the accelerometer interrupt pin.
Parameters:
ui8Pins is a bitpacked bitmask of accelerometer interrupt pins; it can be an ORed combination
of the following values:
m BSP_ACC_INT1
m BSP_ACC_INT2
ui32IntType is an enumerated data type that must be one of the following values:
m GPIO_FALLING_EDGE
= GPIO_RISING_EDGE
m GPIO_BOTH_EDGES
m GPIO_LOW_LEVEL
m GPIO_HIGH_LEVEL
7.2.2.8 void accIntUnregister (uint8_t ui8Pins)
This function unregisters the custom interrupt handler from the GPIO pins specified by ui8Pins.
Parameters:
ui8Pins is a bitpacked bitmask of accelerometer interrupt pins; it can be an ORed combination
of the following values:
m BSP_ACC_INT1
m BSP_ACC_INT2
Returns:
None
7.2.2.9 void accReadData (int16_t x pit6XVal, int16_t x pi16YVal, int16_t x pi16ZVal)
This function reads present acceleration data. the function assumes the SPI in FIFO of the device
to be empty.
Parameters:
«xpi16XVal is a pointer to where the x-axis value is stored.
xpi16YVal is a pointer to where the y-axis value is stored.
xpi16ZVal is a pointer to where the z-axis value is stored.
Returns:
None
34 SWRU327 — April 11,2013

CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com

Accelerometer

7.2.2.10

7.2.2.11

7.3

void accReadReg (uint8_t uiBAddr, uint8_t x pui8Buf, uint8_t ui8Len)

This function reads one or more accelerometer registers.

Parameters:
ui8Addr is the register start address.

pui8Buf is a pointer to the destination buffer.
ui8Len is the number of registers to read.

Returns:
None

void accWriteReg (uint8_t ui8Addr, const uint8_t « pui8Buf, uint8_t ui8Len)

This function writes one or more accelerometer registers. The function implements burst-like func-
tionality. The BMA250 accelerometer does not support burst write (multiple writes with CSn low)
thus CSn is pulled high between each address-data pair.

Parameters:
uiBAddr is the register start address.

pui8Buf is the pointer to source buffer.
ui8Len is the number of registers to write.

Returns:
None

Programming Example

The following code example initializes the accelerometer and periodically reads
the X, Y and Z axis data. For more accelerometer code examples, see
bsp/srf06eb_cc2538/examples/accelerometer

#include <bsp.h>
#include <acc_bma250.h>

unsigned short x, vy, z, 1i;

//

// Initialize the SPI interface
//

bspSpilInit (BSP_SPI_CLK_SPD);

//
// Initialize the accelerometer (interrupts disabled, 2g mode)
//

accInit ();

while (1)

SWRU327 — April 11, 2013 35

CC BY-ND 3.0 — Texas Instruments Incorporated

Accelerometer www.ti.com

accReadData (&x, &y, &z);

// Simple wait
for (i=0; i<65000; i++);

36 SWRU327 — April 11,2013
CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com

Ambient Light Sensor

8

8.1

8.2

8.2.1

Ambient Light Sensor

I OAUCH ON ... e e e e e e e s 37
AP FUNCHIONS .. e e e e 37
Programming EXamIPIe ... e 38
Introduction

The ambient light sensor (ALS) on the SmartRFO6EB is an automotive qualified Bosch SFH5711
with logarithmic current output. The SmartRFO6EB BSP drivers provides a set of functions for
configuring and reading the ALS output.

The driver files are in bsp/srf06eb_cc2538/drivers.

m source/als_srfO6eb.c contains the function implementations for CC2538 on
SmartRFO6EB.

m source/als_sfh5711.h contains the API definitions for use by applications and accelerom-
eter register definitions.

API Functions

Functions

m void alsInit (void)
m uint16_t alsRead (void)
m void alsUninit (void)

Detailed Description

The ALS API has three functions:

m Functions alslnit() and alsUninit() are used to configure the ALS.

m Function alsRead() uses the CC2538 ADC to read the voltage over an external resistor on the
SmartRFOGEB.

The ALS driver may be excluded from the SmartRFO6EB BSP by defining ALS_EXCLUDE. For
more information on how to configure the SmartRFO6EB BSP for CC2538 precompiled library, see
Section 2.4

SWRU327 — April 11, 2013 37

CC BY-ND 3.0 — Texas Instruments Incorporated

Ambient Light Sensor www.ti.com

8.2.2

8.2.2.1

8.2.2.2

8.2.2.3

8.3

Function Documentation

alslnit

This function initializes the ALS. The sensor is powered up and the onboard ADC is configured.

Prototype:
void
alsInit (void)

Returns:
None

uint16_t alsRead (void)

This function triggers and returns ADC conversion from the ALS output. A 12-bit ADC conversion
results in a value of [0, 4095].

Returns:
Returns the value read from the light sensor

void alsUninit (void)

This function uninitializes the ALS. This function assumes that the ALS power pin has already been
configured as output using, for example, alsInit().

Returns:
None

Programming Example

The following code example shows how to initialize and read data from the SFH5711 ALS. For more
ALS code examples, see bsp/srf06eb_cc2538/examples/lightsensor.

#include <als_sfh5711.h>

//

// Initialize the Ambient Light Sensor
//

alsInit ();

//
// Sample value
//

unsigned short alsValue = alsRead();

38

SWRU327 — April 11,2013
CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com

LCD

9

9.1

9.2

LCD

I OAUCH ON ... e e e e e e e s 39
AP FUNCHIONS .. e e e e 39
54

Programming Example

Introduction

The SmartRFO6EB is fitted with a DOGM128-6 128 by 64 pixel dot matrix LCD display that is
divided into 8 pages (LCD_PAGE_0 through LCD_PAGE_7), each 8 pixels high.

An illustration of the (x,y) coordinate system used in this device driver follows:

+ - > X

| 4+ +

| 1(0,0) PAGE O (127,0) |

Vo PAGE 1 |
\ \

y o \
\ \
\ \
\ \
| (0,63) PAGE 7 (127,63) |
- +

Some of the features of the SmartRFO6EB BSP LCD driver are:

Print string, integers, and floating point numbers.

Provide left, center and right alignment of strings, integers, and floating point numbers.
Update entire LCD display, or parts of it.

Draw vertical, horizontal, and tilted lines.

Draw vertical and horizontal arrows.

The driver files are in bsp/srf06eb_cc2538/drivers.

m source/lcd_srfO6eb.c contains the function implementations for CC2538 on

SmartRFO6EB.
m source/lcd_dogml28_6.c contains generic function implementations.
®m source/lcd_dogml28_6.h contains the API definitions for use by applications.

B source/lcd_dogml28_6_alphabet.c contains the font array for the DOGM128-6 LCD
display.

API Functions

Functions

m void IcdBufferClear (char «pcBuffer)

SWRU327 -

April 11,2013 39
CC BY-ND 3.0 — Texas Instruments Incorporated

LCD

www.ti.com

m void IcdBufferClearHLine (char xpcBuffer, uint8_t ui8XFrom, uint8_t ui8XTo, uint8_t ui8Y)
m void IcdBufferClearLine (char «pcBuffer, uint8_t ui8XFrom, uint8_t ui8YFrom, uint8_t ui8XTo,

uint8_t ui8YTo)

m void IcdBufferClearPage (char «xpcBuffer, tLcdPage iPage)
m void IcdBufferClearPart (char xpcBuffer, uint8_t ui8XFrom, uint8_t ui8XTo, tLcdPage iPage-

From, tLcdPage iPageTo)

void IcdBufferClearPx (char xpcBuffer, uint8_t ui8X, uint8_t ui8Y)

void IcdBufferClearVLine (char xpcBuffer, uint8_t ui8X, uint8_t ui8YFrom, uint8_t ui8YTo)
void IcdBufferCopy (const char xpcFromBuffer, char xpcToBuffer)

void lcdBufferHArrow (char «pcBuffer, uint8_t ui8XFrom, uint8_t ui8XTo, uint8_t ui8Y)

void IcdBufferlnvert (char xpcBuffer, uint8_t ui8XFrom, uint8_t ui8YFrom, uint8_t ui8XTo,
uint8_t ui8YTo)

m void IcdBufferinvertPage (char xpcBuffer, uint8_t ui8XFrom, uint8_t ui8XTo, tLcdPage iPage)
m void IcdBufferPrintFloat (char xpcBuffer, float fNumber, uint8_t ui8Decimals, uint8_t ui8X, tL-

cdPage iPage)
void lcdBufferPrintFloatAligned (char xpcBuffer, float fNumber, uint8_t ui8Decimals, tLcdAlign
iAlignment, tLcdPage iPage)

m void lcdBufferPrintInt (char xpcBuffer, int32_t i32Number, uint8_t ui8X, tLcdPage iPage)
m void IcdBufferPrintIintAligned (char xpcBuffer, int32_t i32Number, tLcdAlign iAlignment, tLcd-

Page iPage)

m void IcdBufferPrintString (char xpcBuffer, const char xpcStr, uint8_t ui8X, tLcdPage iPage)
m void IcdBufferPrintStringAligned (char xpcBuffer, const char xpcStr, tLcdAlign iAlignment, tL-

cdPage iPage)

m void IcdBufferSetHLine (char xpcBuffer, uint8_t ui8XFrom, uint8_t ui8XTo, uint8_t ui8Y)
m void IcdBufferSetlLine (char xpcBuffer, uint8_t ui8XFrom, uint8_t ui8YFrom, uint8_t ui8XTo,

uint8_t ui8YTo)

void IcdBufferSetPx (char xpcBuffer, uint8_t ui8X, uint8_t ui8Y)

void IcdBufferSetVLine (char xpcBuffer, uint8_t ui8X, uint8_t ui8YFrom, uint8_t ui8YTo)

void IcdBufferVArrow (char xpcBuffer, uint8_t ui8X, uint8_t ui8YFrom, uint8_t ui8YTo)

void IcdClear (void)

uint8_t IcdGetFloatLength (float fNumber, uint8_t ui8Decimals)

uint8_t IcdGetlntLength (int32_t i32Number)

uint8_t lcdGetStringLength (const char xpcStr)

void lcdGotoXY (uint8_t ui8X, uint8_t ui8Y)

void lcdInit (void)

void lcdSendBuffer (const char xpcBuffer)

void IcdSendBufferAnimated (const char xpcToBuffer, const char xpcFromBuffer, tLcdMotion
iMotion)

void IcdSendBufferPart (const char xpcBuffer, uint8_t ui8XFrom, uint8_t ui8XTo, tLcdPage
iPageFrom, tLcdPage iPageTo)

void lcdSendCommand (const char «pcCmd, uint8_t ui8Len)

void IcdSendData (const char «pcData, uint16_t uillLen)

void IcdSetContrast (uint8_t ui8Contrast)

void lcdSpilnit (void)

40

SWRU327 — April 11,2013
CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com LCD
9.2.1 Detailed Description
The SmartRFO6EB BSP LCD API is borken into two main groups:
m Functions that manipulate a local buffer on the CC2538.
m Functions that accesses the LCD display.
Functions that manipulate a local LCD buffer are prefixed with lcdBuffer, for example IcdBuffer-
PrintString(). Functions that manipulate the LCD display are prefixed with ledSend, for example
lcdSendBuffer().
Function IcdlInit() configures the LCD display and must be executed before calling any other func-
tions accessing the LCD display. The CC2538 SPI interface must be initialized before calling Ic-
dInit(), using, for example, lcdSpilnit(). Function IcdClear() clears the content of the LCD display
while IcdSetContrast() sets the display contrast.
Functions for sending raw data and commands to the LCD display are lcdSendData() and lcdSend-
Command(). To update parts, or the entire LCD display, functions IcdSendBuffer(), lcdSendBuffer-
Part(), and lcdSendBufferAnimated() are provided.
Functions for handling text strings are IcdBufferPrintString(), IcdBufferPrintStringAligned(), and util-
ity function lcdGetStringLength().
Functions for handling integers are IcdBufferPrintInt(), lcdBufferPrintIntAligned(), and utility function
IcdGetlntLength().
Functions for handling float numbers are IcdBufferPrintFloat(), IcdBufferPrintFloatAligned(), and
utility function lcdGetFloatLength().
Functions for drawing lines, arrows, and single pixels are IcdBufferSetLine(), IcdBufferClearLing(),
IcdBufferSetVLine(), IcdBufferClearVLine(), IcdBufferSetHLine(), IcdBufferClearHLine(), IcdBuffer-
VArrow(), lcdBufferHArrow(), lcdBufferSetPx(), and IcdBufferClearPx().
Other functions for manipulating the LCD buffer are IcdBufferinvert() and IcdBufferInvertPage().
By default, the LCD driver allocates 1024 bytes for a local LCD buffer. Passing 0 as
the buffer argument manipulates or sends this buffer. To reduce RAM use, build flag
LCD_NO_DEFAULT_BUFFER may override the allocation of the buffer.
Warning:
If LCD_NO_DEFAULT_BUFFER is defined, passing 0 as the buffer argument results in unde-
fined behavior.
The LCD driver may be excluded from the SmartRFO6EB BSP by defining LCD_EXCLUDE. For
more information on how to configure the SmartRFO6EB BSP for CC2538 precompiled library, see
Section 2.4.
9.2.2 Function Documentation
9.2.2.1 IcdBufferClear
This function empties the LCD buffer specified by argument pcBuffer by filling it with zeros.
Prototype:
void
lcdBufferClear (char *pcBuffer)
SWRU327 — April 11, 2013 41

CC BY-ND 3.0 — Texas Instruments Incorporated

LCD

www.ti.com

9.222

9.2.2.3

9.224

Parameters:
pcBuffer is a pointer to the target buffer.

Returns:
None

void IcdBufferClearHLine (char x pcBuffer, uint8_t ui8XFrom, uint8_t ui8XTo,
uint8_t ui8Y)

this function Clears a horizontal line from (ui8XFrom, ui8Y') to (ui8XTo, ui8Y) from buffer pcBuffer.

Parameters:
pcBuffer is a pointer to the target buffer.

ui8XFrom is the start column [0-127].
ui8XTo is the end column [0-127].
ui8Y is the row [0-63].

Returns:
None

void IcdBufferClearLine (char x pcBuffer, uint8_t ui8XFrom, uint8_t ui8YFrom,
uint8_t ui8XTo, uint8_t ui8YTo)

This function clears a line in buffer pcBuffer from (ui8XFrom, ui8YFrom) to (ui8XTo, ui8YTo). The
function uses Bresenham’s line algorithm.

Parameters:
pcBuffer is a pointer to the target buffer.

ui8XFrom is the start column [0—127].
ui8XTo is the end column [0-127].
ui8YFrom is the start row [0-63].
ui8YTo is the end row [0-63].

Returns:
None

void IcdBufferClearPage (char x pcBuffer, tLcdPage iPage)

This function clears the page specified by iPage in LCD buffer specified by pcBuffer.

Parameters:
pcBuffer is a pointer to the target buffer.

iPage is the page to clear. Must be one of the following enumerated values:
m eLcdPage0
m eLcdPage1
m eLcdPage2

42

SWRU327 — April 11,2013
CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com LCD

m eLcdPage3

m eLcdPaged

m eLcdPage5

m eLcdPage6

m eLcdPage7
Returns:
None

9.2.2.5 void IcdBufferClearPart (char x pcBuffer, uint8_t ui8XFrom, uint8_t ui8XTo,
tLcdPage iPageFrom, tLcdPage iPageTo)

This function clears the pixels in a given piece of a page. Resolution is given in coulmns [0-127]
and pages [0—7]. The function assumes ui8XFrom <= ui8XTo and iPageFrom <= iPageTo.

Parameters:
pcBuffer is a pointer to the target buffer.

ui8XFrom is the lowest x-position (column) to be cleared [0—127].
ui8XTo is the highest x-position to be cleared [ui8XFrom—127].
iPageFrom is the first page cleared. Must be one of the following enumerated values:
m eLcdPage0
eLcdPage1
eLcdPage2
eLcdPage3
eLcdPage4d
eLcdPage5
eLcdPage6
m eLcdPage7
iPageTo is the last page cleared [iPageFrom—elLcdPage7].

Returns:
None

9.2.2.6 void IcdBufferClearPx (char x pcBuffer, uint8_t ui8X, uint8_t ui8Y)

This function clears the pixel at (ui8X, ui8Y).

Parameters:
pcBuffer is a pointer to the target buffer.
ui8X is the pixel x-position (column) [0-127].
ui8Y is the pixel y-position (row) [0-63].

Returns:
None

SWRU327 — April 11, 2013 43
CC BY-ND 3.0 — Texas Instruments Incorporated

LCD

www.ti.com

9.2.2.7

9.2.2.8

9.2.2.9

9.2.2.10

void IcdBufferClearVLine (char = pcBuffer, uint8_t ui8X, uint8_t ui8YFrom, uint8_t
ui8YTo)

This function clears a vertical line from (ui8X, ui8YFrom) to (ui8X, ui8YTo) from buffer specified by
argument pcBuffer.

Parameters:
pcBuffer is a pointer to the target buffer.

ui8X is the x-position (column) of the line [0-127].
ui8YFrom is the start row [0-63].
ui8YTo is the end row [0-63].

Returns:
None

void IcdBufferCopy (const char x pcFromBuffer, char x pcToBuffer)

This function copies the content of pcFromBuffer to pcToBuffer. If either of the two arguments are
0, the default buffer is used for this argument.

Parameters:
pcToBuffer is a pointer to the destination buffer.

pcFromBuffer is a pointer to the target buffer.

Returns:
None

void IcdBufferHArrow (char x pcBuffer, uint8_t ui8XFrom, uint8_t ui8XTo, uint8_t
ui8Y)

This function draws a horizontal arrow from (ui8XFrom, ui8Y) to (ui8XTo, ui8Y') to buffer specified
by pcBuffer. The function assumes ui8Y to be in the range [2—61] in order for arrowhead to fit on
the LCD.

Parameters:
pcBuffer is a pointer to target buffer.

ui8XFrom is the start column [0-127].
ui8XTo is the end column [0—127].
ui8Y is the the y-position (row) of the arrow [2—-61].

Returns:
None

void IcdBufferlnvert (char x pcBuffer, uint8_t ui8XFrom, uint8_t ui8YFrom, uint8_t
ui8XTo, uint8_t ui8YT0)

This function inverts the pixels (bits) in a given region of the buffer specified by pcBuffer.

44

SWRU327 — April 11,2013
CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com LCD

Parameters:
pcBuffer is a pointer to the target buffer.

ui8XFrom is the first x-position (column) to invert [0—127].
ui8YFrom is the first y-position (row) to invert [0—63].
ui8XTo is the last x-position (column) to invert [0—127].
ui8YTo is the last y-position (row) to invert [0—63].

Returns:
None

9.2.2.11 void IcdBufferlnvertPage (char « pcBuffer, uint8_t ui8XFrom, uint8_t ui8XTo,
tLcdPage iPage)

This function inverts a range of columns in the display buffer on a specified page (for example,
eLcdPage0). This function assumes ui8XFrom <= ui8XTo.

Parameters:
pcBuffer is a pointer to the target buffer.

ui8XFrom is the first x-position (column) to invert [0-127].
ui8XTo is the last x-position to invert [ui8XFrom—127].
iPage is the page on which to invert. Must be one of the following enumerated values:
eLcdPage0

eLcdPage1

eLcdPage2

eLcdPage3

eLcdPage4

eLcdPage5

eLcdPage6

eLcdPage7

Returns:
None

9.2.2.12 void IcdBufferPrintFloat (char « pcBuffer, float fNumber, uint8_t ui8Decimals,
uint8_t ui8X, tLcdPage iPage)

This function writes a number of data type float on the display at a specified column and page.
Use this function instead of performing a float to c-string conversion and then using IcdBuffer-
PrintString().

Parameters:
pcBuffer is a pointer to the target buffer.
fNumber is the number to print.
ui8Decimals is the number of decimals to print, MAX = 10.
ui8X is the x-position (column) to begin printing [0—-127].
iPage is the page on which to print. Must be one of the following enumerated values:
m eLcdPage0

SWRU327 — April 11, 2013 45
CC BY-ND 3.0 — Texas Instruments Incorporated

LCD

www.ti.com

9.2.2.13

9.2.2.14

eLcdPage1
eLcdPage2
eLcdPage3
eLcdPage4
eLcdPage5
eLcdPage6
eLcdPage7

Returns:
None

void IcdBufferPrintFloatAligned (char « pcBuffer, float fNumber, uint8_t
ui8Decimals, tLcdAlign iAlignment, tLcdPage iPage)

This function writes a float number to buffer pcBuffer as specified by the iAlignment argument.

Parameters:
pcBuffer is a pointer to the target buffer.
fNumber is the number to be printed.
ui8Decimals is the number of decimals to be printed, MAX = 10.
iAlignment is the text alignment. Can be one of the following enumerated values:
m elLcdAlignLeft
m eLcdAlignCenter
m eLcdAlignRight
iPage is the page on which to print. Must be one of the following enumerated values:
eLcdPage0
eLcdPage1
eLcdPage2
eLcdPage3
eLcdPage4
eLcdPage5
eLcdPage6
eLcdPage7

Returns:
None

void |cdBufferPrintInt (char x pcBuffer, int32_t i32Number, uint8_t ui8X, tL.cdPage
iPage)

This function writes an integer to the buffer specified by pcBuffer.

Parameters:
pcBuffer is a pointer to the target buffer.

i32Number is the number to print.
ui8X is the x-position (column) to begin printing [0—-127].

46

SWRU327 — April 11,2013
CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com LCD

iPage is the page on which to print. Must be one of the following enumerated values:
eLcdPage0
eLcdPage1
eLcdPage2
eLcdPage3
eLcdPage4d
eLcdPage5
eLcdPage6
eLcdPage7

Returns:
None

9.2.2.15 void IcdBufferPrintIintAligned (char x pcBuffer, int32_t i32Number, tLcdAlign
iAlignment, tLcdPage iPage)

This function writes an integer to buffer pcBuffer as specified by the ui8Alignment argument.

Parameters:
pcBuffer is a pointer to the target buffer.
i32Number is the number to be printed.
iAlignment is the text alignment. Must be one of the following enumerated values:
m eLcdAlignLeft
m eLcdAlignCenter
= eLcdAlignRight
iPage is the page on which to print. Must be one of the following enumerated values:
eLcdPage0
eLcdPage1
eLcdPage2
eLcdPage3
eLcdPage4
eLcdPage5
eLcdPage6
eLcdPage7

Returns:
None

9.2.2.16 void IcdBufferPrintString (char x pcBuffer, const char « pcStr, uint8_t ui8X,
tLcdPage iPage)

This function writes a string to the buffer specified by pcBuffer.

Parameters:
pcBuffer is a pointer to the output buffer.
pcStr is a pointer to the string to print.

SWRU327 — April 11, 2013 47
CC BY-ND 3.0 — Texas Instruments Incorporated

LCD

www.ti.com

9.2.2.17

ui8X is the x-position (column) to begin printing [0—-127].

iPage is the page on which to print. Must be one of the following enumerated values:
eLcdPage0

eLcdPage1

eLcdPage2

eLcdPage3

eLcdPage4d

eLcdPage5

eLcdPage6

eLcdPage7

Returns:
None

void IcdBufferPrintStringAligned (char « pcBuffer, const char x pcStr, tLcdAlign
iAlignment, tLcdPage iPage)

This function writes a string to buffer pcBuffer as specified by the iAlignment argument.

Parameters:
pcBuffer is a pointer to the target buffer.
pcStr is a pointer to the string to print.
iAlignment is the text alignment. Must be one of the following enumerated values:
m eLcdAlignLeft
m eLcdAlignCenter
m LCD_ALIGN_RIGHT
iPage is the page on which to print. Must be one of the following enumerated values:
eLcdPage0
eLcdPage1
eLcdPage2
eLcdPage3
eLcdPage4
eLcdPage5
eLcdPage6
eLcdPage7

Returns:
None

9.2.2.18 void IcdBufferSetHLine (char x pcBuffer, uint8_t ui8XFrom, uint8_t ui8XTo, uint8_t
ui8Y)
This function draws a horizontal line from (ui8XFrom, ui8Y) to (ui8XTo, ui8Y) into buffer pcBuffer.
Parameters:
pcBuffer is a pointer to the target buffer.
48 SWRU327 — April 11,2013

CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com

LCD

9.2.2.19

9.2.2.20

9.2.2.21

ui8XFrom is the start column [0—127].
ui8XTo is the end column [0—127].
ui8Y is the row [0-63].

Returns:
None

void IcdBufferSetLine (char x pcBuffer, uint8 t ui8XFrom, uint8_t ui8YFrom,
uint8_t ui8XTo, uint8_t ui8YTo)

This function draws a line in buffer pcBuffer from (ui8XFrom, ui8YFrom) to (ui8XTo, ui8YTo). The
function uses Bresenham'’s line algorithm.

Parameters:
pcBuffer is a pointer to the target buffer.
ui8XFrom is the start column [0-127].
ui8XTo is the end column [0-127].
ui8YFrom is the start row [0-63].
ui8YTo is the end row [0-63].

Returns:
None

void |cdBufferSetPx (char x pcBuffer, uint8_t ui8X, uint8_t ui8Y)

This function sets a pixel on (ui8X, ui8Y).

Parameters:
pcBuffer is a pointer to the target buffer.
ui8X is the pixel x-position (column) [0-127].
ui8Y is the pixel y-position (row) [0—63].

Returns:
None

void IcdBufferSetVLine (char x pcBuffer, uint8_t ui8X, uint8_t ui8YFrom, uint8_t
ui8Y'10)

This function draws a vertical line from (ui8X, ui8YFrom) to (ui8X, ui8YTo) into buffer pcBuffer.

Parameters:
pcBuffer is a pointer to the target buffer.
ui8X is the x-position (column) of the line [0-127].
ui8YFrom is the start row [0-63].
ui8YTo is the end row [0-63].

Returns:
None

SWRU327 -

April 11,2013 49
CC BY-ND 3.0 — Texas Instruments Incorporated

LCD

www.ti.com

9.2.2.22

void IcdBufferVArrow (char x pcBuffer, uint8_t ui8X, uint8_t ui8YFrom, uint8_t
ui8YTo)

This function draws a vertical arrow from (ui8X, ui8YFrom) to (ui8X, ui8YTo) to the buffer specified
by pcBuffer. The function assumes that ui8X is in the range [2—125] for the arrowhead to fit on the
LCD.

Parameters:
pcBuffer is a pointer to the target buffer.
ui8X is the the x-position (column) of the arrow [2—125].
ui8YFrom is the start row [0-63].
ui8YTo is the end row [0-63].

Returns:
None

9.2.2.23 void IcdClear (void)
This function clears the LCD display. This function acts directly on the display and does not modify
internal buffers.
Returns:
None
9.2.2.24 uint8_t IcdGetFloatLength (float fNumber, uint8_t ui8Decimals)
This function returns the character length a float will need on the LCD display. This function is used
by IcdBufferPrintFloat() and IcdBufferPrintFloatAligned(). ui8Decimals must be provided to limit the
number of decimals.
Parameters:
fNumber is the number whose character length is determined.
ui8Decimals is the desired number of decimals to use (maximum 10).
Returns:
Returns the character length of fNumber.
9.2.2.25 uint8_t lcdGetlIntLength (int32_t i32Number)
This function returns the character length an integer will use on the LCD display. For example,
i32Number = 215 returns 3 and i32Number = —215 returns 4 (add one for the minus charac-
ter). Multiply result of lcdGetIntLength() by LCD_CHAR_WIDTH to determine the number of pixels
needed by i32Number.
Parameters:
i32Number is the number whose character length is determined.
Returns:
Returns the character length of i32Number.
50 SWRU327 — April 11,2013

CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com LCD
9.2.2.26 uint8_t lcdGetStringLength (const char x pcStr)
Returns the length a c-string in number of characters by looking for the end-of-string character "\ 0.
Multiply by LCD_CHAR_WIDTH to get length in pixels.
Parameters:
pcStr is the null-terminated string whose character length is determined.
Returns:
Returns length of pcStr
9.2.2.27 void lcdGotoXY (uint8_t ui8X, uint8_t ui8Y)
This function sets the internal data cursor of the LCD to the location specified by ui8X and ui8Y.
When data is sent to the display, data will start printing at internal cursor location.
Parameters:
ui8X is the column [0—127].
ui8Y is the page [0-7].
Returns:
None
9.2.2.28 void IcdlInit (void)
This function initializes the LCD. This function assumes that the SPI interface has been initialized
using, for example, bspSpilnit(). lcdInit() must be run before you can use the LCD.
Returns:
None
9.2.2.29 void IcdSendBuffer (const char x pcBuffer)
This function sends the specified buffer to the display. The buffer size is assumed to be 1024 bytes.
Passing pcBuffer as 0 will send the default buffer. If LCD_NO_DEFAULT_BUFFER is defined,
passing pcBuffer as 0 will result in undefined behavior.
Parameters:
pcBuffer is a pointer to the source buffer.
Returns:
None
SWRU327 — April 11, 2013 51

CC BY-ND 3.0 — Texas Instruments Incorporated

LCD

www.ti.com

9.2.2.30 void IlcdSendBufferAnimated (const char x pcToBuffer, const char x pcFromBuffer,

tLcdMotion iMotion)

This function updates the LCD display by creating an animated transition between two display
buffers. Two animations, eLcdSlideLeft and eLcdSlideRight, slide the new screen left or right,
respectively.

Function lcdSendBuffer() updates the display to show the new buffer instantanously. lcdSend-
BufferAnimated() on the other side, makes a smooth transition into showing the new buffer.

pcToBuffer should point to the buffer the LCD display transitions in to. pcFromBuffer should point
to the buffer that what was sent to the LCD display last time IcdSendBuffer() or lcdSendBufferAn-
imated() was called. By taking both the present and the upcoming display buffers as parameters,
lcdSendBufferAnimated() does not take up any memory unless used.

Example:

1. Send a buffer to the display using for example lcdSendBulffer().
2. Manipulate a second buffer using lcdBuffer functions.

3. Run IcdSendBufferAnimated() to update display with a smooth transition from the initial to the
second buffer.

Parameters:
pcToBuffer is a pointer to the buffer with the new display content.

pcFromBuffer is a pointer to the buffer with the existing display content.

iMotion indicates which animation to use for transition. Must be one of the following enumer-
ated values:

m elLcdSlideLeft
m elLcdSlideRight

Returns:
None

9.2.2.31 void IcdSendBufferPart (const char x pcBuffer, uint8_t ui8XFrom, uint8_t ui8XTo,
tLcdPage iPagefFrom, tLcdPage iPageTo)
This function sends the specfied part of pcBuffer to the corresponding part on the LCD. This func-
tion assumes ui8XFrom <= ui8XTo and iPageFrom <= iPageTo. The resolution is given in coulmns
[0-127] and pages [0-7].
Parameters:
pcBuffer is a pointer to the buffer to send. The default buffer is sent if pcBuffer is 0.
ui8XFrom is the lowest x-position (column) to write [0—127].
ui8XTo is the highest x-position to write [ui8XFrom—127].
iPageFrom is the first page to write. Must be one of the following enumerated values:
m eLcdPage0
= eLcdPage1
m eLcdPage2
m eLcdPage3
m eLcdPage4d
52 SWRU327 — April 11,2013

CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com LCD
m eLcdPage5
m eLcdPage6
m eLcdPage7
iPageTo is the last page to write [iPageFrom—eLcdPage7].
Returns:
None
9.2.2.32 void lcdSendCommand (const char x* pcCmd, uint8_t ui8Len)
This function sends ui8Len bytes of commands to the LCD controller.
Parameters:
pcCmd is a pointer to the array of commands.
ui8Len is the number of bytes to send.
Returns:
None
9.2.2.33 void IcdSendData (const char « pcData, uint16_t ui1Len)
This function sends ui8Len bytes of data to be displayed on the LCD.
Parameters:
pcData is a pointer to the array of data.
uillLen is the number of bytes to send.
Returns:
None
9.2.2.34 void lcdSetContrast (uint8_t ui8Contrast)
This function sets the LCD contrast.
Parameters:
ui8Contrast is the contrast value [0-63].
Returns:
None
9.2.2.35 void lcdSpilnit (void)
This function initializes the LCD SPI interface to the maximum allowed speed.
Returns:
None
SWRU327 — April 11, 2013 53

CC BY-ND 3.0 — Texas Instruments Incorporated

LCD

www.ti.com

Programming Example

The following example shows how to use the LCD API to initialize the LCD, manipulate
a local buffer and transmit it to the LCD display. For more LCD code examples, see
bsp/srf06eb_cc2538/examples/lcd.

#include "bsp.h"
#include "lcd_dogml28_6.h"

//

// Initialize the SPI interface and then LCD display.
//

bspSpiInit () ;

lcdInit ();

//

// Write a string string to page 2 of the default buffer
// (first arg. is 0), starting at x-position (column) 1.

//
lcdBufferPrintString (0, "Hello world!"™, 1, LCD_PAGE_2);

//

// Send the default buffer to the LCD display.
//

lcdSendBuffer (0);

54

SWRU327 — April 11,2013
CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com

Micro SD Card Reader

10

10.1

10.2

Micro SD Card Reader

I OAUCH ON ... e e e e e e e s 55
AP FUNCHIONS .. e e e e 55
Programming EXamIPIe ... e 58
Introduction

The SmartRFO6EB is fitted with a micro SD card reader. The SmartRFO6EB BSP SD card driver
provides a set of functions for initializing and accessing a connected micro SD/MMC card over SPI.

The driver files are in bsp/srf06eb_cc2538/drivers/.

B source/sdcard_srf06eb.c contains the function implementations for CC2538 on
SmartRFO6EB.

m source/sdcard.h contains the API definitions for use by applications and Micro SD Card
register definitions.

SD card commands and definitions are prefixed using SDCARD__ (for example SDCARD_CMDO0).

API Functions

Functions
m uint8_t sdCardBlockRead (uint32_t ui32Block, uint8_t «pui8Buffer)
m uint8_t sdCardBlockWrite (uint32_t ui32Block, const uint8_t «xpui8Buffer)
m uint32_t sdCardGetBlockSize (void)
m uint8_t sdCardGetCid (tSdCardCid xpsCid)
m uint8_t sdCardGetCsd (uint8_t +pui8Csd)
m uint32_t sdCardGetSize (void)
m uint8_t sdCardGetStatusReg (uint8_t «pui8Buffer)
m uint8_t sdCardInit (void)
m uint8_t sdCardStatus (void)

10.2.1 Detailed Description
The SmartRFO6EB micro SD card API provides basic functionality for initializing and accessing a
mounted SD card.
Function sdCardInit() initializes the connected card and must be called before calling any other SD
card API functions. Function sdCardStatus() returns the current connection state of the SD card.
Functions sdCardBlockRead() and sdCardBlockWrite() provide functionality for reading and writing
blocks of data to the micro SD card.

SWRU327 — April 11, 2013 55

CC BY-ND 3.0 — Texas Instruments Incorporated

Micro SD Card Reader www.ti.com

10.2.2

10.2.2.1

10.2.2.2

Functions sdCardGetStatusReg(), sdCardGetCid(), sdCardGetCsd(), and sdCardGetSize() are
provided to read various registers from the SD card.

Function sdCardGetBlockSize() is a utility function that returns the default SD card block size.

The SD card driver may be excluded from the SmartRFO6EB BSP by defining SD-
CARD_EXCLUDE. For more information on how to configure the SmartRFO6EB BSP for CC2538
precompiled library, see Section 2.4.

Function Documentation

sdCardBlockRead

This function reads block ui32Block from the SD card. The function converts argument ui32Block
to byte address if needed.

Prototype:
ulint8_t
sdCardBlockRead (uint32_t ui32Block,
uint8_t xpui8Buffer)

Parameters:
ui32Block is the logical block to read (LBA, Logical Block Addressing).

pui8Buffer is a pointer to the destination array for read data.

Returns:
Returns SDCARD_SUCCESS on success

uint8_t sdCardBlockWrite (uint32_t ui32Block, const uint8_t « pui8Buffer)

This function writes SDCARD_BLOCKLENGTH bytes to block ui32Block on the SD card. The
function converts argument ui32Block to byte address if needed.

Parameters:
ui32Block is the logical block to write (LBA).

pui8Buffer is a pointer to the source array with data.

Returns:
Returns SDCARD_SUCCESS on success

10.2.2.3 uint32_t sdCardGetBlockSize (void)
This function returns the SD card block size. This function does not access the SD card.
Returns:
Returns block size in bytes
56 SWRU327 — April 11,2013

CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com

Micro SD Card Reader

10.2.2.4

10.2.2.5

10.2.2.6

10.2.2.7

10.2.2.8

uint8_t sdCardGetCid (tSdCardCid x psCiad)

This function reads out the 16-byte long card identification data (CID) register.

Parameters:
psCid is a pointer to the tSdCardCid structure.

Returns:
Returns SDCARD_SUCCESS on success

uint8_t sdCardGetCsd (uint8_t x pui8Csd)

This function reads out the card specific data (CSD) register . The size of the CSD register is
16 bytes. The data are stored in the buffer specified by pui8Csd with MSB first; for example,
CSD[127:126] is at pui8Csd([7:6].

Parameters:
pui8Csd is a pointer to the destination array.

Returns:
Returns SDCARD_SUCCESS on success

uint32_t sdCardGetSize (void)

This function returns the size of card in KiB (1 KiB = 210 bytes).

Returns:
Returns size of card in bytes, 0 if failed

uint8_t sdCardGetStatusReg (uint8_t x pui8Buffer)

This function reads out the 2-byte SD card status register.

Parameters:
pui8Buffer is a pointer to the destination array.

Returns:
Returns SDCARD_SUCCESS on success

uint8_t sdCardlInit (void)

This function initialies an SD/MMC card. This function must be run before you can use the SD card.
This function assumes that the SPI interface has been initialized using, for example, bspSpilnit().

Returns:
Returns SDCARD_SUCCESS on success

SWRU327 -

April 11,2013 57
CC BY-ND 3.0 — Texas Instruments Incorporated

Micro SD Card Reader www.ti.com

10.2.2.9 uint8_t sdCardStatus (void)

This function checks the card connection status.

Returns:
Returns SDCARD_STATUS_READY if card is present and initialized.

Returns SDCARD_STATUS_NOINIT if card is present, but not initialized.
Returns SDCARD_STATUS_NOCARD if no card is detected.

10.3 Programming Example

The below code example shows how to initialize a micro SD card and read a data block from the
SD card. See bsp/srf06eb_cc2538/examples/sdcard for more micro SD card reader code
examples.

#include <bsp.h>
#include <sdcard.h>

unsigned char readBuffer [SDCARD_BLOCKLENGTH];

//
// Initialize SPI interface, then try to
// initialize micro SD card

//
bspSpiInit (BSP_SPI_CLK_SPD) ;
if (sdCardInit () != SDCARD_SUCCESS)
{
bspAssert () ; // Initialization failed
}
//

// Read block 0 from SD card into readBuffer.
// BAn SD card block is 512 bytes.
//
if (sdCardBlockRead (0, readBuffer) != SDCARD_SUCCESS)
{
bspAssert (); // Failed to read from SD card
}

58 SWRU327 — April 11,2013
CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com

UART Backchannel

11

11.1

11.2

11.2.1

UART Backchannel

INtrOAUCH ON .. e 59
AP FUNCHONS .. e 59
Programming EXamIpIe 63

Introduction

The SmartRFO6EB BSP for CC2538 implements a simple UART driver that is targeted for use
with the UART to USB backchannel that is available on the SmartRFO6EB. The BSP UART driver
supports the 8-N-1 UART format: 8 data bits, no parity bits, and 1 stop bit. Hardware flow control is
not supported.

The BSP UART driver uses internal buffers for received and transmitted data. The size of the
internal buffers is run time customizable.

The driver files are in bsp/srf06eb_cc2538/drivers.

®m source/bsp_uart.c contains the function implementations for CC2538 on SmartRFOG6EB.
B source/bsp_uart.h contains the API definitions for use by applications.

API Functions

Functions

m uint32_t bspUartBaudRateGet (void)

m uint8_t bspUartBuflnit (uint8_t *xpui8TxBuf, uint16_t ui16TxByteAlloc, uint8_t xpui8RxBuf,
uint16_t ui16RxByteAlloc)

uint8_t bspUartClose (void)

uint16_t bspUartDataGet (uint8_t xpui8Data, uint16_t ui16Length)
uint16_t bspUartDataPut (uint8_t xpui8Data, uint16_t ui16Length)
void bspUartFlushRx (void)

void bspUartFlushTx (void)

void bspUartlsrHandler (void)

uint8_t bspUartOpen (uint32_t ui32BaudRate)

uint16_t bspUartRxCharsAvail (void)

uint16_t bspUartTxSpaceAvail (void)

Detailed Description

The SmartRFO6EB BSP UART driver is broken into three groups:

m Functions that configure the UART connection and buffers
m Functions for transmitting and receiving data

SWRU327 — April 11, 2013 59

CC BY-ND 3.0 — Texas Instruments Incorporated

UART Backchannel www.ti.com

11.2.2

11.2.2.1

11.2.2.2

m Utility functions

The bspUartBuflnit() function configures the internal buffers and must be executed before calling
any other BSP UART functions. The bspUartOpen() function configures the CC2538 UART module
for operation, and the bspUartClose() function stops UART operation.

The bspUartDataGet() and bspUartDataPut() functions reads and transmits data over the UART
connection.

The bspUartBaudRateGet(), bspUartTxSpaceAvail() and bspUartRxCharsAvail(), bspUart-
FlushTx(), and bspUartFlushRx() functions are utility functions.

The SmartRFO6EB BSP UART driver is interrupt driven, but does not register a handler to the
CC2538 UART interrupt vector; this must be done by the application. It is possible to configure the
BSP UART driver to register an interrupt handler, using define BSP_UART_ALLOCATE_ISR.

By default, the bspUartDataGet() function will limit the number of bytes read to the smaller of the
following two numbers:

m the requested number of bytes

m the number of bytes available in the internal receive buffer
The bspUartDataPut() function will similarly limit the number of bytes written to the internal transmit

buffer. To configure the BSP UART driver to only read(write) data if the requested number of bytes
is available in the internal receive(transmit) buffer, use define BSP_UART_ALL_OR_NOTHING.

The BSP UART driver may be excluded from the SmartRFO6EB BSP by defining
BSP_UART_EXCLUDE. For more information on how to configure the SmartRFO6EB BSP for
CC2538 precompiled library, see Section 2.4.

Function Documentation

bspUartBaudRateGet

This function returns the current BSP UART baud rate in baud. The function returns 0 if the BSP
UART module is not configured.

Prototype:
uint32_t
bspUartBaudRateGet (void)

Returns:
Returns the current BSP UART baud rate in baud.

uint8_t bspUartBuflnit (uint8_t x pui8TxBuf, uint16_t ui16TxByteAlloc, uint8_t x
pui8RxBuf, uint16_t ui16RxByteAlloc)

This function initializes buffers used by BSP UART module.

Parameters:
pui8TxBuf is a pointer to the TX buffer.

ui16TxByteAlloc is the size of the TX buffer in bytes.

60

SWRU327 — April 11,2013
CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com

UART Backchannel

11.2.2.3

11.2.2.4

11.2.2.5

pui8RxBuf is a pointer to the RX buffer.
ui16RxByteAlloc is the size of the RX buffer in bytes.

Returns:
Returns BSP_UART_SUCCESS on success.

Returns BSP_UART_ERROR on configuration error.

uint8_t bspUartClose (void)

This function stops UART communication.

Returns:
Returns BSP_UART_SUCCESS on success.

uint16_t bspUartDataGet (uint8_t * pui8Data, uint16_t ui16Length)

This function reads up to ui16Length bytes from the BSP UART RX buffer into the buffer specified
by pui8Data.

If BSP_UART_ALL_OR_NOTHING is defined, data is read only if ui76Length or more bytes are
available in the BSP UART RX buffer.

Parameters:
pui8Data is a pointer to the destination buffer.

uil6Length is the number of bytes to transfer.

Returns:
Returns the number of bytes read from the BSP UART RX buffer.

uint16_t bspUartDataPut (uint8_t x pui8Data, uint16_t ui16Length)

This function puts up to ui16Length bytes into the BSP UART TX buffer and starts to transfer data
over UART.

If BSP_UART_ALL_OR_NOTHING is defined, data is put into the TX buffer only if there is room
for all ui16Length bytes.

Parameters:
pui8Data is a pointer to the source buffer.

ui16Length is the number of bytes to transfer.

Returns:
Returns the number of bytes actually copied to the TX buffer.

SWRU327 — April 11, 2013 61

CC BY-ND 3.0 — Texas Instruments Incorporated

UART Backchannel www.ti.com

11.2.2.6

11.2.2.7

11.2.2.8

11.2.2.9

void bspUartFlushRx (void)

This function flushes the BSP UART RX buffer by resetting the buffer control structure.

Returns:
None

void bspUartFlushTx (void)

This function flushes the BSP UART TX buffer by resetting the buffer control structure.

Returns:
None

void bspUartlsrHandler (void)

This function handles BSP UART interrupts. This function clears all handled interrupt flags.

Returns:
None

uint8_t bspUartOpen (uint32_t ui32BaudRate)

This function initializes UART communication at the baud rate specified by ui32BaudRate. This
function must be called after initializing the UART buffers using bspUartBuflInit(). The UART format
between the BSP MCU is 8-N-1 (that is, 8 data bits, no parity bit, and 1 stop bit). The implementation
does not support flow control.

The UART module is configured to use IO clock as clock source.

Parameters:
ui32BaudRate is the UART baud rate. The baud rate must be one of the following enumerated
values:

eBaudRate9600
eBaudRate38400
eBaudRate57600
eBaudRate115200
eBaudRate230400
eBaudRate460800

Returns:
Returns BSP_UART_SUCCESS on success.

Returns BSP_UART_UNCONFIGURED if buffers are not configured.
Returns BSP_UART_BAUDRATE_ERROR if the baud rate is not supported.

62

SWRU327 — April 11,2013
CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com UART Backchannel

11.2.2.10 uint16_t bspUartRxCharsAvail (void)

This function returns the number of data bytes available in the BSP UART RX buffer.

Returns:
Returns the number data bytes available in the BSP UART RX buffer.

11.2.2.11 uint16_t bspUartTxSpaceAvail (void)

This function returns the number of bytes available in the BSP UART TX buffer.

Returns:
Returns the free space in bytes of the BSP UART TX buffer.

11.3 Programming Example

The following code example opens a UART connection at 115200 baud. For more BSP UART code
examples, see bsp/srf06eb_cc2538/examples/uart

#include <bsp.h>
#include <bsp_uart.h>

//

// Let BSP UART module allocates handler to
// CC2538 UART interrupt vector

//

#define BSP_UART_ALLOCATE_ISR

//

// Buffers

//

static uint8_t pui8TxBuf[32];
static uint8_t pui8RxBuf[32];

int main (void)
{
uint8_t ui8Data = 0x34;

//
// Initialize buffers and open connection
//
bspUartBufInit (&pui8TxBuf, 32, &pui8RxBuf, 32);
if (bspUartOpen (eBaudRatell5200) != BSP_UART_SUCCESS)
{
//
// Failed to open UART connection
//
while (1) ;
SWRU327 — April 11, 2013 63

CC BY-ND 3.0 — Texas Instruments Incorporated

UART Backchannel www.ti.com

//
// Write a byte (0x34)

//
bspUartDataPut (&ui8Data, 1);

//
// Close UART connection

//
bspUartClose () ;

//

// Enter infinite loop

//
while (1) ;

64 SWRU327 — April 11,2013
CC BY-ND 3.0 — Texas Instruments Incorporated

www.ti.com

References

12 References

References and other useful material:
m CC2538 Technical Reference Manual (SWRU319)
m CC2538 Peripheral Driver Library User’'s Guide (SWRU325)

m SmartRF06 Evaluation Board User’s Guide (SWRU321)

SWRU327 — April 11, 2013
CC BY-ND 3.0 — Texas Instruments Incorporated

65

http://www.ti.com/lit/swru319
http://www.ti.com/lit/swru325
http://www.ti.com/lit/swru321

References

www.ti.com

66

CC BY-ND 3.0 — Texas Instruments Incorporated

SWRU327 — April 11,2013

www.ti.com

Document History

13 Document History

Version

Date

Description

SWRU327

2013-04-11

Initial version.

SWRU327 — April 11, 2013

CC BY-ND 3.0 — Texas Instruments Incorporated

67

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESDA46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale
supplied at the time of order acknowledgment.

Tl warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

Tl assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which Tl components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of significant portions of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. Tl is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by Tl for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
Tl is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of Tl components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify Tl and its representatives against any damages arising out of the use
of any Tl components in safety-critical applications.

In some cases, Tl components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No Tl components are authorized for use in FDA Class Il (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those Tl components which Tl has specifically designated as military grade or “enhanced plastic’ are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

Tl has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, Tl will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation —www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters
DLP® Products

DSP

Clocks and Timers
Interface

Logic

Power Mgmt
Microcontrollers
RFID

OMAP Applications Processors
Wireless Connectivity

dataconverter.ti.com

www.dlp.com

dsp.ti.com
www.ti.com/clocks

interface.ti.com

logic.ti.com

power.ti.com
microcontroller.ti.com

www.ti-rfid.com

www.ti.com/omap

Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial

Medical

Security

Space, Avionics and Defense
Video and Imaging

TI E2E Community

www.ti.com/wirelessconnectivity

www.ti.com/computers

Www.ti.com/consumer-apps

www.ti.com/energy
www.ti.com/industrial

www.ti.com/medical

www.ti.com/security

www.ti.com/space-avionics-defense

www.ti.com/video

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated

	Document License
	Copyright
	Revision Information
	1 Introduction
	2 Using the SmartRF06EB BSP
	2.1 Introduction
	2.2 Using the BSP as a precompiled library
	2.3 Using the BSP as Source Files
	2.4 Configuring and Recompiling the BSP Library

	3 BSP Base Functions
	3.1 Introduction
	3.2 API Functions
	3.3 Programming Example

	4 I/O Pin Interrupt Handler
	4.1 Introduction
	4.2 API Functions
	4.3 Programming Example

	5 LEDs
	5.1 Introduction
	5.2 API Functions
	5.3 Programming Example

	6 Keys
	6.1 Introduction
	6.2 API Functions
	6.3 Programming Example

	7 Accelerometer
	7.1 Introduction
	7.2 API Functions
	7.3 Programming Example

	8 Ambient Light Sensor
	8.1 Introduction
	8.2 API Functions
	8.3 Programming Example

	9 LCD
	9.1 Introduction
	9.2 API Functions
	9.3 Programming Example

	10 Micro SD Card Reader
	10.1 Introduction
	10.2 API Functions
	10.3 Programming Example

	11 UART Backchannel
	11.1 Introduction
	11.2 API Functions
	11.3 Programming Example

	12 References
	13 Document History

