/ Application Report
I -{IE)S(’?IEUMENTS SLUA807-January 2017
Understanding CPU Lock-Up Mechanisms in UCD31xx
Devices

Koushik Vaithyanathan

ABSTRACT

The UCD31xx family of devices from Texas Instruments is a highly integrated digital controller for isolated
power applications™. Typical applications are in power supplies, power-factor correction, isolated DC-DC
modules, and so on. These devices include a 32-bit ARM7TDMI-S™ RISC CPU core, multiple memory
banks, three independent PID-based hardware feedback loops, communications ports (PMBus, I°C, SPI,
UART, and JTAG), data converters, general purpose-1/O, and other peripherals.

Users compile and download application-specific firmware in the program flash banks and develop
solutions for a wide variety of power applications including phase shifted full bridge, resonant LLC
converters, and so on. Firmware development involves considerable engineering effort, taking into account
the device-specific hardware features and memory map. Embedded code development without detailed
understanding of hardware specifics is susceptible to errors and results in unexpected behavior. One such
unexpected behavior is CPU lockup, discussed in detail in this document.

Contents
1 (03 8 1 o3 (1 | o 2
2 DEVICE IN ROM MOOE . .uttiitteiiittertte s st s e e st ae st s aa et sa s e st s aa e et san it e s s s n e s s sannnessnnnnes 2
21 Invalid Trim Flash CheCKSUM ... s s r e s s s ss s s ssann e s anannneannns 2
2.2 Invalid Program Flash CheCKSUMueieiriiiin i e e naes 2
3 =Tt T T T o T 1Y/ o 3
3.1 LTt 0 = od S [4= Vo = 3
3.2 No Response on COMMUNICALION POIS ..uuuiustiiuteiseiaeeriessasssinssassrasssarssanssasssnsssansssnns 3
3.3 I3 (0Tt T = 1 11 1= 10T o N 3
3.4 IS (0 o] QT T T == 1o T o 4
35 (O = IS -] o 5
3.6 Supplementary ROOt CaAUSE ANAIYSIS +uuuuiuutiruteiseiaee s risrars i sarrs s sanrsannsraneias 5
3.7 IS0 1] 1= 5
3.8 =] 1= =T 0T 5

1 ST A e T o TN 1Y 1= o] o =T g o 4

SLUA807-January 2017 Understanding CPU Lock-Up Mechanisms in UCD31xx Devices 1

Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA807
http://www.ti.com/product/UCD3138A/datasheet

13 TEXAS

INSTRUMENTS
CPU Lockup www.ti.com
1 CPU Lockup
Lockup is broadly defined as the symptom of a function or task using the CPU and not releasing it for a
period of time. The lockup behavior is more often caused by an application use case and occurs during
firmware code development, engineering evaluation, or at production programming. When the CPU is
locked up, it does not perform any power supply operations and also does not respond to any read/write
commands on its communication ports. A CPU lockup can occur when the device is either in ROM or in
flash mode. The following are the most common mechanisms through which a CPU lockup can occur.
» Device in ROM mode
— Invalid trim flash checksum
— Invalid program flash checksum
» Device in flash mode
— Incorrect image
— No response on communication ports
» Executing a long thread
* Waiting on a hardware event
— Stuck in an infinite loop
e Stuck in an interrupt service routine (ISR)
* Incorrect handler routine
— Stuck in a reset loop
* Invalid address
» lllegal access
e Timer watchdog
— CPU stalled
2 Device in ROM Mode
On device power up or reset, all UCD31xx devices execute the Tl boot ROM code. The ROM code copies
the trim values from the trim flash to the analog control registers, validates program flash checksum, and
so on. The initial start-up execution of the user firmware code in program flash does not happen if there is
an invalid trim flash checksum or invalid program flash checksum.
2.1 Invalid Trim Flash Checksum
The trim flash checksum is programmed in each device at Texas Instruments ATE before the device is
shipped, and the user should not write to or read from this trim flash. The UCD31xx devices depend on a
valid trim flash checksum to execute the code in program flash.
2.2 Invalid Program Flash Checksum

On every device power up or release from any hardware or software reset, the Tl boot ROM calculates
the program flash checksum and verifies if it has the correct checksum value.

The most common reason for an invalid program flash checksum is an incorrect program download to the
wrong starting address for the program flash. The starting address for the program flash differs across the
UCD31xx devices and ensures that the correct content is programmed in the expected location. In
addition, the TI boot ROM code also checks for a valid OXEA opcode in the starting location of the
program flash before execution.

The TI Fusion Digital Power Studio GUI can be used to verify the program flash checksum before
executing the user firmware. The GUI supports device-specific PMBus commands to calculate the
checksum for different code sizes and then verify if the calculated value matches the programmed value in
the checksum location.

ARM7TDMI-S is a trademark of ARM Limited.
All other trademarks are the property of their respective owners.

2

Understanding CPU Lock-Up Mechanisms in UCD31xx Devices SLUA807-January 2017

Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA807

I

TEXAS
INSTRUMENTS

www.ti.com Device in Flash Mode

3.1

3.2

3.2.1

3.2.2

3.3

If the checksum is incorrect, the device stays in ROM mode. This would effectively prevent any code from
being executed. Typically, the PMBus slave address in the firmware (example: 0x58) is different from the
default PMBus slave address of the device in ROM mode (0xB). This would result in the device NACKing
any PMBus commands to the programmed slave address in the firmware (0x58).

The GUI supports scanning for the device in ROM mode and in flash mode. The GUI scans for the ROM
revision to identify the device when it is in ROM mode and scans for the manufacturer device ID when the
device is in flash mode.

Device in Flash Mode

Whenever the boot ROM verifies the program flash has the correct checksum value, the UCD31xx device
transitions to program flash code execution. CPU lockup during flash mode is the condition when there is
no device communication or evidence of any program flash execution. The firmware does not meet the
expected user behavior such as no response to any read/write commands on the communication pins, no
power supply regulation, and so on. The reasons can be as simple as using an incorrect set of header and
linker files or as complex as executing a long thread without servicing requests on communication ports.
Typical cases in which there is no evidence of any program flash execution are discussed in the following
paragraphs.

Incorrect Image

A valid checksum in the program flash does not necessarily mean there will be any evidence of proper
device communication. For example, if the contents of the program flash are all zeroes in the UCD3138
device, the program flash checksum matches an expected value. This action results in the device
executing the firmware in program flash, and also results in a permanently locked up device.

No Response on Communication Ports

In telecom and server power applications, multiple controllers perform different functions, such as AC-DC
conversion, DC-DC regulation, and so on. Communication ports (for example, PMBus or UART) are
responsible for sequencing start-up and also share critical data between the controllers. An unexpected
response on the communication ports can be due to the CPU either executing a long thread or waiting on
a hardware event. Whenever there is no response on the ports, a simple debug procedure is to reset the
device using the nRESET pin and retry the command.

Executing a Long Thread

It is very common to have functions and task calls in a firmware routine that requires a long time to
completely execute. For example, a firmware-based CPCC function involves significant computation and a
large number of CPU clock cycles. If the firmware does not service any PMBus communication requests
during the execution of the CPCC thread, clock stretching occurs on the SCL pin, resulting in a PMBus
clock low time-out.

Waiting on a Hardware Event

In embedded firmware, it is a common practice to wait on an external hardware event to exit a loop.
Examples of a hardware event follow:

* Waiting for a rising edge on an ADC_EXT_TRIG pin
» Expecting the voltage on the analog comparator inputs to cross a minimum threshold

If there is no underlying time-out feature in the loop, this external trigger method makes the device prone
to CPU lockup.

Stuck in an Infinite Loop

During firmware execution, it is possible for the device to be stuck in an infinite loop and never exit it.
Firmware loops occur when the CPU is stuck in an ISR or incomplete handler routines discounting
received data.

SLUA807—January 2017 Understanding CPU Lock-Up Mechanisms in UCD31xx Devices 3
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA807

13 TEXAS
INSTRUMENTS

Device in Flash Mode www.ti.com

331

3.3.2

3.4

Stuck in an ISR

In the UCD31xx devices, whenever an interrupt is triggered, the code in the ISR is executed. It is a
common practice to have the trigger mechanism disabled at the end of the ISR. If the trigger mechanism
is not cleared at the end of the ISR, the CPU constantly services the ISR over and over again. This would
effectively result in a firmware infinite loop in the ISR.

Incorrect Handler Routine

Firmware handler routines for communication protocols can either be based on interrupts or polling. In the
polling methodology, it is a frequent practice to use loops in the background. Such loops consist of
multiple nested if-else conditional statements triggered by status flags. The flags are cleared only when
the received buffer values match one of the supported commands.

Another common programming mistake can occur if the handler routine does not account for any received
buffer value, where the status flag is not cleared. This mistake results in an infinite loop and the device
does not respond to the commands. When the device is stuck in an infinite loop, a simple debug
procedure is to reset the device using the nRESET pin and check if the infinite loop can be exited.

Stuck in a Reset Loop

If the CPU reads or writes to an invalid address, or tries an illegal access, or does not service the timer
watchdog periodically, the following sequence results in a reset loop and the device does not perform the
expected programming behavior.

Device power up, hardware reset, or software reset.

/ \

Internal software reset is triggered. ROM validates flash checksum and starts executing the firmware.

™ /

Decoder module detects an invalid address or illegal access.

Figure 1. Reset Loop Mechanism

The current consumed by the device is different for ROM and flash modes. When the device is stuck in a
reset loop, it alternates between the ROM and flash modes. The simplest debug procedure to determine if
a device is stuck in a reset loop is to probe the current consumption on an oscilloscope.

Understanding CPU Lock-Up Mechanisms in UCD31xx Devices SLUA807-January 2017

Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA807

13 TEXAS
INSTRUMENTS

www.ti.com Device in Flash Mode

34.1 Invalid Address

Each UCD31xx device has a predefined memory map with hardcoded address locations for flash, RAM,
and peripheral registers. Each UCD31xx device has an address decoder block which constantly checks if
the address being accessed for a read or write operation is within the defined address space. Any access
outside this defined address space triggers an illegal address exception and causes an internal device
reset.

Additional caution must be taken when using pointer-based reads and writes to locations outside the
memory mapped variables. Tl highly recommends following the guidelines defined in the programmer’s
manual. The ILLADR status bit in the SYSESR register can be used to detect an invalid address access.

3.4.2 Illegal Access

Registers in the decoder module, central interrupt module, and the system module must be accessed only
in privilege mode, not in user mode. For example, to issue a software reset, any writes to
SysRegs.SYSECR.bit. RESET must be done in privilege mode. When the device is in user mode any write
to the SysRegs.SYSECR register causes an illegal access reset. The ILLACC status bit in the SYSESR
register can be used to detect an invalid address access.

3.4.3 Timer Watchdog

The timer watchdog feature in the UCD31xx devices is used to ensure that the device is not stuck in any
infinite firmware loop. The watchdog can be programmed to reset the device periodically if it is not
serviced. If any CPU thread occupies the CPU for long periods of time and does not service the watchdog,
the device is automatically reset. Tl strongly recommends using this firmware protection technique.

3.5 CPU Stalled

The UCD31xx devices have an internal high frequency oscillator (HFO). If this free-running oscillator is
shut down, then the CPU is stalled. The program counter will be stuck at its last value until the HFO runs
again. A simple way to detect an HFO shut down is to measure the current consumed by the UCD31xx
device. If overall current consumption is below 20 mA, there is a possibility that the HFO has been shut
down by unintended firmware access.

3.6 Supplementary Root Cause Analysis

If the root cause still cannot be determined after ruling out the previous possibilities, gather the following
details before submitting for failure analysis through the Tl Quality Tracking System.

» Short description of application use case

» Detailed schematics and layout information on all the pins of the UCD31xx device
» Firmware image (xO file) and the necessary build files

* Relevant master communication commands to observe device response

» Data from the previously discussed debug procedures

3.7 Summary

This document discussed in detail the potential causes of CPU lockup mechanisms. In addition, the
existing prevention techniques and the detection methods are also listed. Whenever a CPU lockup
mechanism is observed on UCD31xx devices, Tl recommends executing a step-by-step debug for walking
through the previously mentioned possibilities.

3.8 References
1. Texas Instruments, UCD3138A Highly-Integrated Digital Controller for Isolated Power, Data Sheet

SLUA807—January 2017 Understanding CPU Lock-Up Mechanisms in UCD31xx Devices 5

Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA807
http://www.ti.com/product/UCD3138A/datasheet

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “Tl Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.

TI's provision of Tl Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for Tl
products, and no additional obligations or liabilities arise from TI providing such Tl Resources. Tl reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such Tl products as used in such applications. Tl has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the Tl product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TlI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS I1S” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify Tl and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, Tl products and services.
These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	Understanding CPU Lock-Up Mechanisms in UCD31xx Devices
	1 CPU Lockup
	2 Device in ROM Mode
	2.1 Invalid Trim Flash Checksum
	2.2 Invalid Program Flash Checksum

	3 Device in Flash Mode
	3.1 Incorrect Image
	3.2 No Response on Communication Ports
	3.2.1 Executing a Long Thread
	3.2.2 Waiting on a Hardware Event

	3.3 Stuck in an Infinite Loop
	3.3.1 Stuck in an ISR
	3.3.2 Incorrect Handler Routine

	3.4 Stuck in a Reset Loop
	3.4.1  Invalid Address
	3.4.2 Illegal Access
	3.4.3 Timer Watchdog

	3.5 CPU Stalled
	3.6 Supplementary Root Cause Analysis
	3.7 Summary
	3.8 References

	Important Notice

